
2 

function 8(t) is 

( 1.37) 

( 1.38) 
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1.3 PHYSICAL SYSTEM RESPONSE PROPERTIES 

Most of the applications of correlation and spectral density functions consid
ered in this book involve some physical system. A brief review is presented 
here of the response properties of physical systems that are pertinent to 
material in later chapters. The emphasis is on mechanical systems, since they 
are the basis for most of the later illustrations. However, using classical 
analogies [1.3], the relationships presented here apply equally well to many 
other physical systems. 

1.3.1. Unit-Impulse Response Functions 

An ideal physical system is one which (a) is physically realizable, (b) has 
constant parameters, (c) is stable, and (d) is linear, all to be defined shortly. 
For such an ideal system, the basic response properties of primary interest 
are given by the response of the system to a delta-function input, called the 
unit-impulse response function or the weighting function h( 'T ). Specifically, 
consider a single-input/single-output system with a well-defined input x(t) 
producing a well-defined output y(t ), as shown in Figure 1.7. The unit
impulse response function is given by 

h(t) = y(t) when x(t) = 8(t) ( 1.39) 

where t is time measured from the instant the delta function input is applied. 
The importance of the unit-impulse response function as a description of the 
system is due to the following fact: For any arbitrary input x(t), the linear 
system output y(t) is given by the superposition or convolution integral 

y(t) = {" h(T)x(t- 7) d'T 
-<X> 

( 1.40) 

That is, the response y(t) is given by a weighted linear sum over the entire 
time history of the input x(t ). 

A physically realizable system cannot respond to an input until that input 
has been applied. This requires that 

for 'T < 0 ( 1.41) 

Hence for physically realizable systems, the lower limit of integration in 
Equation 1.40 is zero rather than minus infinity. 

x(t)-----ill~l.__ __ h_(T-1-~----ill<~ y(t) 

Figure 1.7 Ideal single-input 1 single-output system. 
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A physical system is said to have constant parameters if the unit-impulse 
response function is not dependent on the time an input is applied, that is, 

for - oo < t < oo ( 1.42) 

If a physical system has constant parameters, stationary inputs will always 
produce stationary responses (after switch-on transients decay). 

A physical system is said to be stable if every possible bounded input 
produces a bounded response. This condition is assured if 

(1.43) 

System stability is required for all the inputjoutput relationships and appli
cations discussed in this book. 

A linear system is additive and homogeneous. Given two inputs x 1 and x 2 
which individually produce outputs y 1 and y 2 per Equation 1.40, the system 
is additive if the input x 1 + x 2 produces an output y 1 + y 2 , and is homoge
neous if the input ex 1 produces the output cy 1, where c is an arbitrary 
constant. This essentially means that h( -r) is not dependent on the input, 
that is, 

for all x(t) (1.44) 

If a system is linear, random inputs with a Gaussian probability distribution 
(to be defined in Chapter 2) will produce outputs that also have a Gaussian 
probability distribution. 

Linearity is the most likely property of physical systems to be violated in 
practice. In particular, with random inputs, there is usually a small probabil
ity of an instantaneous input so extreme that the system can no longer 
respond in a directly proportional manner as demanded by the homogeneity 
requirement. This is an important and difficult problem in those applications 
which involve extreme-value statistics, for example, the prediction of catas
trophic failures of structures under random loading. It may also be a problem 
in more general applications, such as determining the response properties of 
structures with nonlinear stiffness and/or damping parameters. Appropriate 
analysis procedures for many types of nonlinear systems are developed in 
Chapter 13, and detailed further in Reference 1.4. 

1.3.2 Frequency Response Functions 

The dynamic properties of physical systems are usually described in terms of 
some linear transformation of the unit-impulse response function h( -r) rather 
than h( -r) itself. Any one of several such linear transformations might be 
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employed for special applications. For ideal systems, however, a Fourier 
transformation producing a direct frequency-domain description of the sys
tem properties is most desirable from the viewpoint of the applications of 
concern in this book. The Fourier transform of the unit-impulse response 
function where h( T) = 0 for T < 0 is given by 

( 1.45) 

and is called the frequency response function . The frequency response func
tion is generally a complex number with real and imaginary parts given by 

( 1.46) 

For convenience, it will be described throughout this book in terms of 
complex polar notation as follows: 

H(f) =I H(f) ie - j<l><f> (1.47) 

iH(f)i = [HJ(f) + H/(f)r
12 -t[ H,(f)] <P(f) = tan HR(f) 

The magnitude IH(f}l is commonly referred to as the system gain factor, and 
the phase </J(f} is called the system phase factor. Note that the phase factor 
is defined so that lag angles are positive, to be consistent with the sign 
conventions used throughout this book. 

The physical interpretation of the frequency response function is straight
forward . For an ideal system as described in Section 1.3.1, a sinusoidal input 
at frequency f will produce a sinusoidal output at exactly the same frequency 
f. However, the amplitude of the output will generally be different from the 
input amplitude, and the output will generally be shifted in phase from the 
input as follows: 

x(t) =Xsin27rft y(t) = Ysin(27rft- 8) ( 1.48) 

The ratio of the output to input amplitudes equals the system gain factor, 
and the phase shift between the output and input is the system phase factor 
at frequency f , that is, 

iH(f)i = IY(f)i 
iX(f)i 

<P(f) = 8(!) ( 1.49) 
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The term transfer function is commonly used by engineers to denote the 
same quantity as the frequency response function of Equation 1.45. However, 
to be precise, the transfer function should be defined by the Laplace 
transform equation 

p =a+ jb ( 1.50) 

where the real part of p, namely a, is not restricted to be zero. For a * 0, 
such Laplace transforms will be different from the Fourier transforms of 
Equation 1.45. Along the imaginary axis where a = 0, by taking b = 2·rrf, 
one obtains H 1(j2Tr f) = H(f). Thus along the imaginary axis, the transfer 
function is the same as the frequency response function, which helps explain 
why these terms are often interchanged. 

1.3.3 Single-Degree-of-Freedom Systems 

To illustrate a frequency response function of common interest, consider the 
simple mechanical system consisting of a mass m, a spring with spring 
constant k, and a velocity-dependent damping mechanism with damping 
coefficient c, as shown in Figure 1.8. A mechanical system of this type is 
commonly referred to as a single-degree-of-freedom (SDOF) system. Assume 
the mass is subjected to a force input F(t) producing a displacement 
response y(t ). From Newton's laws, the linear differential equation of motion 
describing the response of this system is given by 

d 2y(t) dy(t) 
m 2 +c--+ky(t)=F(t) 

dt dt 
( 1.51) 

To find the frequency response function of the system, let the input F(t) = 

B(t), a delta function as defined as Section 1.2.4. Then from Equation 1.39, 
the response y(t) = h(t), and from Equation 1.45, the Fourier transform of 

I' 

r---~y(t) 

k 

m 1---F(I) 

c 

Figure 1.8 Single-degree-of-freedom mechanical system. 
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the response Y(f) = H(f). Taking Fourier transforms of both sides of 
Equation 1.51 yields 

[ - (2rrf/m + j2rrfc + k] Y(J) = 1 

Thus 

[ 
2 ] - I 

Y(J) = H(J) = k- {2rrf) m + j2rrfc ( 1.52) 

It is convenient to write Equation 1.52 in a different form by introducing 
two definitions: 

c 
{ = 2/kffl ( 1.53) 

The quantity { in Equation 1.53 is called the damping ratio of the system and 
describes the system damping as a fraction of the critical damping cc. If the 
mass is displaced from its neutral position and released, cc is that value of 
damping just sufficient for the mass to return to its neutral position without 
further oscillation; for the system in Figure 1.8, cc = 2..fkm . The quantity fn 
in Equation 1.53 is called the undamped natural frequency of the system. If 
the system had no damping and the mass were displaced from its neutral 
position and released, the system would perpetually oscillate at the frequency 
fn· By using the definitions in Equation 1.53, the frequency response function 
of the system in Equation 1.52 may be written as 

( 1.54) 

In terms of the system gain and phase factors defined in Equation 1.47, 

( 1.55a) 

(1.55b) 

Plots of these gain and phase factors are shown in Figure 1.9. 
Two characteristics of the plots in Figure 1.9 are of particular interest. 

First, the gain factor has a peak at some frequency less than fn for all cases 
where ( ~ 11 fi. The frequency at which this peak gain factor occurs is 
called the resonance frequency of the system. Specifically, it can be shown by 
minimizing the denominator of IH(/)1 in Equation 1.55a that the resonance 
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Figure 1.9 Frequency response function of a single-degree-of-freedom system with force 
input and displacement output. (a) Gain factor . (b) Phase factor . 
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frequency, denoted by f" is given by 

( 1.56) 

and that the peak value of the gain factor which occurs at the resonance 
frequency is given by 

(1.57) 

Second, the phase factor varies from 0° for frequencies much less than fn to 
180° for frequencies much greater than fn· The exact manner in which f/J(f} 
varies between these phase-angle limits depends on the damping ratio (. 
However, for all values of (, the phase f/J(f} = 90° for f = fn· 

Actual physical systems often have very small values of damping such that 
~ -c 1. For example, mechanical structures generally have damping ratios of 
( < 0.05. Hence it is common in practice to find physical systems with gain 
factors that display very sharp peaks and phase factors that show rapid 180° 
phase shifts. Such systems appear, in effect, to be narrow-bandpass filters, 
and their bandwidth is commonly measured in terms of the half-power-point 
bandwidth of the gain factor given by 

For the usual case where the damping ratio is small, it can be shown by 
substituting Equation 1.58 into Equation 1.55a that 

( 1.59) 

1.3.4 Multiple-Degree-of-Freedom Systems 

Some physical systems can be easily modeled as a collection of discrete 
elements (lumped parameters) forming a multiple-degree-of-freedom 
(MDOF) system, meaning more than one coordinate is needed to describe 
the dynamic response of the system. This is particularly true of electrical 
systems composed of discrete circuit elements (e.g., inductors, capacitors, and 
resistors). It is also true of some mechanical systems that can be approxi
mated by a collection of lumped masses, springs, and dampers. The analysis 
of lumped-parameter MDOF mechanical systems is thoroughly treated in 
most textbooks on mechanical vibration (e.g., [1.5]), and special cases with 
nonlinear elements are addressed in Chapter 13. For more general engineer
ing applications, however, the ultimate MDOF mechanical system with 
distributed mass, stiffness, and damping is of greater interest, as discussed in 
the next section. 


