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This second edition represents a revised and extended version and offers an improved
description besides new issues and extended references. The contents of this book are
the basis of a lecture on Digital Audio Signal Processing at the Hamburg University of
Technology (TU Hamburg-Harburg) and a lecture on Multimedia Signal Processing at the
Helmut Schmidt University, Hamburg. For further studies you can find interactive audio
demonstrations, exercises and Matlab examples on the web site
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Besides the basics of digital audio signal processing introduced in this second edition,
further advanced algorithms for digital audio effects can be found in the book DAFX –
Digital Audio Effects (Ed. U. Zölzer) with the related web site

http://www.dafx.de

My thanks go to Professor Dieter Leckschat, Dr. Gerald Schuller, Udo Ahlvers,
Mijail Guillemard, Christian Helmrich, Martin Holters, Dr. Florian Keiler, Stephan Möller,
Francois-Xavier Nsabimana, Christian Ruwwe, Harald Schorr, Dr. Oomke Weikert,
Catja Wilkens and Christian Zimmermann.
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Preface to the First Edition

Digital audio signal processing is employed in recording and storing music and speech
signals, for sound mixing and production of digital programs, in digital transmission to
broadcast receivers as well as in consumer products like CDs, DATs and PCs. In the latter
case, the audio signal is in a digital form all the way from the microphone right up to the
loudspeakers, enabling real-time processing with fast digital signal processors.

This book provides the basis of an advanced course in Digital Audio Signal Processing
which I have been giving since 1992 at the Technical University Hamburg-Harburg.
It is directed at students studying engineering, computer science and physics and also
for professionals looking for solutions to problems in audio signal processing like in
the fields of studio engineering, consumer electronics and multimedia. The mathematical
and theoretical fundamentals of digital audio signal processing systems will be presented
and typical applications with an emphasis on realization aspects will be discussed. Prior
knowledge of systems theory, digital signal processing and multirate signal processing is
taken as a prerequisite.

The book is divided into two parts. The first part (Chapters 1–4) presents a basis
for hardware systems used in digital audio signal processing. The second part (Chapters
5–9) discusses algorithms for processing digital audio signals. Chapter 1 describes the
course taken by an audio signal from its recording in a studio up to its reproduction
at home. Chapter 2 contains a representation of signal quantization, dither techniques
and spectral shaping of quantization errors used for reducing the nonlinear effects of
quantization. In the end, a comparison is made between the fixed-point and floating-
point number representations as well as their associated effects on format conversion and
algorithms. Chapter 3 describes methods for AD/DA conversion of signals, starting with
Nyquist sampling, methods for oversampling techniques and delta-sigma modulation. The
chapter closes with a presentation of some circuit design of AD/DA converters. After an
introduction to digital signal processors and digital audio interfaces, Chapter 4 describes
simple hardware systems based on a single- and multiprocessor solutions. The algorithms
introduced in the following Chapters 5–9 are, to a great extent, implemented in real-time
on hardware platforms presented in Chapter 4. Chapter 5 describes digital audio equalizers.
Apart from the implementation aspects of recursive audio filters, nonrecursive linear phase
filters based on fast convolution and filter banks are introduced. Filter designs, parametric
filter structures and precautions for reducing quantization errors in recursive filters are dealt
with in detail. Chapter 6 deals with room simulation. Methods for simulation of artificial
room impulse response and methods for approximation of measured impulse responses
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are discussed. In Chapter 7 the dynamic range control of audio signals is described.
These methods are applied at several positions in the audio chain from the microphone
up to the loudspeakers in order to adapt to the dynamics of the recording, transmission
and listening environment. Chapter 8 contains a presentation of methods for synchronous
and asynchronous sampling rate conversion. Efficient algorithms are described which are
suitable for real-time processing as well as off-line processing. Both lossless and lossy
audio coding are discussed in Chapter 9. Lossless audio coding is applied for storing of
higher word-lengths. Lossy audio coding, on the other hand, plays a significant role in
communication systems.

I would like to thank Prof. Fliege (University of Mannheim), Prof. Kammeyer
(University of Bremen) and Prof. Heute (University of Kiel) for comments and support.
I am also grateful to my colleagues at the TUHH and especially Dr. Alfred Mertins,
Dr. Thomas Boltze, Dr. Bernd Redmer, Dr. Martin Schönle, Dr. Manfred Schusdziarra,
Dr. Tanja Karp, Georg Dickmann, Werner Eckel, Thomas Scholz, Rüdiger Wolf, Jens
Wohlers, Horst Zölzer, Bärbel Erdmann, Ursula Seifert and Dieter Gödecke. Apart from
these, I would also like to say a word of gratitude to all those students who helped me in
carrying out this work successfully.

Special thanks go to Saeed Khawaja for his help during translation and to Dr. Anthony
Macgrath for proof-reading the text. I also would like to thank Jenny Smith, Colin
McKerracher, Ian Stoneham and Christian Rauscher (Wiley).

My special thanks are directed to my wife Elke and my daughter Franziska.

Udo Zölzer
Hamburg, July 1997



Chapter 1

Introduction

It is hardly possible to make a start in the field of digital audio signal processing without
having a first insight into the variety of technical devices and systems of audio technology.
In this introductory chapter, the fields of application for digital audio signal processing are
presented. Starting from recording in a studio or in a concert hall, the whole chain of signal
processing is shown, up to the reproduction at home or in a car (see Fig. 1.1). The fields of
application can be divided into the following areas:

• studio technology;

• digital transmission systems;

• storage media;

• audio components for home entertainment.

The basic principles of the above-mentioned fields of application will be presented as an
overview in order to exhibit the uses of digital signal processing. Special technical devices
and systems are outside the focus of this chapter. These devices and systems are strongly
driven by the development of the computer technology with yearly changes and new
devices based on new technologies. The goal of this introduction is a trend-independent
presentation of the entire processing chain from the instrument or singer to the listener and
consumer of music. The presentation of signal processing techniques and their algorithms
will be discussed in the following chapters.

1.1 Studio Technology

While recording speech or music in a studio or in a concert hall, the analog signal from a
microphone is first digitized, fed to a digital mixing console and then stored on a digital
storage medium. A digital sound studio is shown in Fig. 1.2. Besides the analog sources
(microphones), digital sources are fed to the digital mixing console over multichannel
MADI interfaces [AES91]. Digital storage media like digital multitrack tape machines
have been replaced by digital hard disc recording systems which are also connected via

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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Figure 1.1 Signal processing for recording, storage, transmission and reproduction.

multichannel MADI interfaces to the mixing console. The final stereo mix is stored via a
two-channel AES/EBU interface [AES92] on a two-channel MASTER machine. External
appliances for effects or room simulators are also connected to the mixing console via
a two-channel AES/EBU interface. All systems are synchronized by a MASTER clock
reference. In digital audio technology, the sampling rates1 fS = 48 kHz for professional
studio technology, fS = 44.1 kHz for compact disc and fS = 32 kHz for broadcasting
applications are established. In addition, multiples of these sampling frequencies such as
88.2, 96, 176.4, and 192 kHz are used. The sound mixing console plays a central role
in a digital sound studio. Figure 1.3 shows the functional units. The N input signals are
processed individually. After level and panorama control, all signals are summed up to
give a stereo mix. The summation is carried out several times so that other auxiliary stereo
and/or mono signals are available for other purposes. In a sound channel (see Fig. 1.4), an
equalizer unit (EQ), a dynamic unit (DYN), a delay unit (DEL), a gain element (GAIN)
and a panorama element (PAN) are used. In addition to input and output signals in an audio
channel, inserts as well as auxiliary or direct outputs are required.

1.2 Digital Transmission Systems

In this section digital transmission will be briefly explained. Besides the analog wireless
broadcasting systems based on amplitude and frequency modulation, DAB2 (Digital Audio
Broadcasting) has been introduced in several countries [Hoe01]. On the other hand, the
internet has pushed audio/video distribution, internet radio and video via cable networks.

Terrestrial Digital Broadcasting (DAB)

With the introduction of terrestrial digital broadcasting, the quality standards of a compact
disc will be achieved for mobile and stationary reception of radio signals [Ple91].
Therefore, the data rate of a two-channel AES/EBU signal from a transmitting studio
is reduced with the help of a source coder [Bra94] (see Fig. 1.5). Following the source
coder (SC), additional information (AI) like the type of program (music/speech) and

1Data rate 16 bit × 48 kHz = 768 kbit/s; data rate (AES/EBU signal) 2 × (24 + 8) bit × 48 kHz =
3.072 Mbit/s; data rate (MADI signal) 56 × (24 + 8) bit × 48 kHz = 86.016 Mbit/s.

2http://www.worlddab.org/.
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Figure 1.2 Digital sound studio.
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Figure 1.3 N-channel sound mixing console.

traffic information is added. A multicarrier technique is applied for digital transmission
to stationary and mobile receivers. At the transmitter, several broadcasting programs are
combined in a multiplexer (MUX) to form a multiplex signal. The channel coding and
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modulation is carried out by a multi-carrier transmission technique (Coded Orthogonal
Frequency Division Multiplex, [Ala87, Kam92, Kam93, Tui93]).
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Figure 1.4 Sound channel.
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Figure 1.5 DAB transmitter.

The DAB receiver (Fig. 1.6) consists of the demodulator (DMOD), the demultiplexer
(DMUX) and the source decoder (SD). The SD provides a linearly quantized PCM signal
(Pulse Code Modulation). The PCM signal is fed over a Digital-to-Analog Converter (DA
Converter) to an amplifier connected to loudspeakers.

�/(� �/!0 ��
�&$
&/�

&�

Figure 1.6 DAB receiver.

For a more detailed description of the DAB transmission technique, an illustration
based on filter banks is presented (see Fig. 1.7). The audio signal at a data rate of 768 kbit/s
is decomposed into subbands with the help of an analysis filter bank (AFB). Quantization
and coding based on psychoacoustic models are carried out within each subband. The data
reduction leads to a data rate of 96–192 kbit/s. The quantized subband signals are provided
with additional information (header) and combined together in a frame. This so-called ISO-
MPEG1 frame [ISO92] is first subjected to channel coding (CC). Time-interleaving (TIL)
follows and will be described later on. The individual transmitting programs are combined
in frequency multiplex (frequency-interleaving FIL) with a synthesis filter bank (SFB) into
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one broad-band transmitting signal. The synthesis filter bank has several complex-valued
input signals and one complex-valued output signal. The real-valued band-pass signal is
obtained by modulating with ejωct and taking the real part. At the receiver, the complex-
valued base-band signal is obtained by demodulation followed by low-pass filtering.
The complex-valued analysis filter bank provides the complex-valued band-pass signals
from which the ISO-MPEG1 frame is formed after frequency and time deinterleaving
and channel decoding. The PCM signal is combined using the synthesis filter bank after
extracting the subband signals from the frame.

ω

ω ω

ω ω

+ ω− ω

ω

ω

Figure 1.7 Filter banks within DAB.

DAB Transmission Technique. The special problems of mobile communications are dealt
with using a combination of the OFDM transmission technique with DPSK modulation
and time and frequency interleaving. Possible disturbances are minimized by consecutive
channel coding. The schematic diagram in Fig. 1.8 shows the relevant subsystems.

For example, the transmission of a program P1 which is delivered as an ISO-MPEG1
stream is shown in Fig. 1.8. The channel coding doubles the data rate. The typical
characteristics of a mobile communication channel like time and frequency selectivity are
handled by using time and frequency interleaving with the help of a multicarrier technique.
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Figure 1.8 DAB transmission technique.

The burst disturbances of consecutive bits are reduced to single bit errors by spreading
the bits over a longer period of time. The narrow-band disturbances affect only individual
carriers by spreading the transmitter program P1 in the frequency domain, i.e. distribution
of transmitter programs of carrier frequencies at a certain displacement. The remaining
disturbances of the mobile channel are suppressed with the help of channel coding, i.e. by
adding redundancy, and decoding with a Viterbi decoder. The implementation of an OFDM
transmission is discussed in the following.
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OFDM Transmission. The OFDM transmission technique is shown in Fig. 1.9. The
technique stands out owing to its simple implementation in the digital domain. The data
sequence ct (k) which is to be transmitted, is written blockwise into a register of length 2M .
The complex numbers from d1(m) to dM(m) are formed from two consecutive bits (dibits).
Here the first bit corresponds to the real part and the second to the imaginary part. The
signal space shows the four states for the so-called QPSK [Kam92a, Pro89]. The vector
d(m) is transformed with an inverse FFT (Fast Fourier Transform) into a vector e(m)

which describes the values of the transmitted symbol in the time domain. The transmitted
symbol xt (n) with period Tsym is formed by the transmission of the M complex numbers
ei(m) at sampling period TS . The real-valued band-pass signal is formed at high frequency
after DA conversion of the quadrature signals, modulation by ejωct and by taking the real
part. At the receiver, the transmitted symbol becomes a complex-valued sequence xr(n)

by demodulation with e−jωct and AD conversion of the quadrature signal. M samples of
the received sequence xr(n) are distributed over the M input values fi(m) and transformed
into the frequency domain with the help of FFT. The resulting complex numbers gi(m) are
again converted to dibits and provide the received sequence cr (k). Without the influence of
the communication channel, the transmitted sequence can be reconstructed exactly.

OFDM Transmission with a Guard Interval. In order to describe the OFDM trans-
mission with a guard interval, the schematic diagram in Fig. 1.10 is considered. The
transmission of a symbol of length M over a channel with impulse response h(n) of length
L leads to a received signal y(n) of length M + L − 1. This means that the received
symbol is longer than the transmitted signal. The exact reconstruction of the transmitted
symbol is disturbed because of the overlapping of received symbols. Reconstruction of
the transmitted symbol is possible by cyclic continuation of the transmitted symbol. Here,
the complex numbers from the vector e(m) are repeated so as to give a symbol period of
Tsym = (M + L)TS . Each of the transmitted symbols is, therefore, extended to a length
of M + L. After transmission over a channel with impulse response of length L, the
response of the channel is periodic with length M . After the initial transient state of the
channel, i.e. after the L samples of the guard interval, the following M samples are written
into a register. Since a time delay occurs between the start of the transmitted symbol
and the sampling shifted by L displacements, it is necessary to shift the sequence of
length M cyclically by L displacements. The complex values gi(m) do not correspond
to the exact transmitted values di(m) because of the transmission channel h(n). However,
there is no influence of neighboring carrier frequencies. Every received value gi(m) is
weighted with the corresponding magnitude and phase of the channel at the specific
carrier frequency. The influence of the communication channel can be eliminated by
differential coding of consecutive dibits. The decoding process can be done according to
zi(m) = gi(m)g∗

i (m − 1). The dibit corresponds to the sign of the real and imaginary parts.
The DAB transmission technique presented stands out owing to its simple implementation
with the help of FFT algorithms. The extension of the transmitted symbol by a length L

of the channel impulse response and the synchronization to collect the M samples out of
the received symbol have still to be carried out. The length of the guard interval must be
matched to the maximum echo delay of the multipath channel. Owing to differential coding
of the transmitted sequence, an equalizer at the receiver is not necessary.
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t

Figure 1.9 OFDM transmission.

Digital Radio Mondiale (DRM)

In the interest of national and international broadcasting stations a more widespread
program delivery across regional or worldwide regions is of specific importance. This
is accomplished by analog radio transmission in the frequency range below 30 MHz.
The limited audio quality of the amplitude modulation technique (channel bandwidth 9–
10 kHz) with an audio bandwidth of 4.5 kHz leads to a low acceptance rate for such kind
of audio broadcasting. The introduction of the digital transmission technique Digital Radio
Mondiale3 will replace the existing analog transmission systems. The digital transmission
is based on OFDM and the audio coding MPEG4-AAC in combination with SBR (Spectral
Band Replication).

3http://www.drm.org.
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Figure 1.10 OFDM transmission with a guard interval.

Internet Audio

The growth of the internet offers new distribution possibilities for information, but
especially for audio and video signals. The distribution of audio signals is mainly driven by
the MP3 format (MPEG-1 Audio Layer III [Bra94]) or in proprietary formats of different
companies. The compressed transmission is used because the data rate of home users is
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still low compared to lossless audio and video formats. Since the transmission is based on
file transfer of packets, the data rates strongly depend on the providing server, the actual
internet traffic and the access point of the home computer. A real-time transfer of high-
quality music is still not possible. If the audio compression is high enough to achieve a just
acceptable audio quality, a real-time transfer with a streaming technology is possible, since
the file size is small and a transmission needs less time (see Fig. 1.11). For this a receiver
needs a double memory filled with incoming packets of a coded audio file and a parallel
running audio decoding. After decoding of a memory with a sufficiently long audio portion
the memory is transferred to the sound card of the computer. During sound playback of
the decoded audio signal further incoming packets are received and decoded. Packet loss
can lead to interrupts in the audio signal. Several techniques for error concealment and
protocols allow the transfer of coded audio.

Audio
Audio

compression
Internet
Intranet

WEB-
Browser

Media-Player
WEB Server

Figure 1.11 Audio streaming via the internet.

1.3 Storage Media

Compact Disc

The technological advances in the semiconductor industry have led to economical storage
media for digitally encoded information. Independently of developments in the computer
industry, the compact disc system was introduced by Philips and Sony in 1982. The storage
of digital audio data is carried out on an optical storage medium. The compact disc operates
at a sampling rate of fS = 44.1 kHz.4 The essential specifications are summarized in
Table 1.1.

R-DAT (Rotary-head Digital Audio on Tape)

The R-DAT system makes use of the heliscan method for two-channel recording. The
available devices enable the recording of 16-bit PCM signals with all three sampling rates
(Table 1.2) on a tape. R-DAT recorders are used in studio recording as well as in consumer
applications.

MiniDisc and MP3 Format

Advanced coding techniques are based on psychoacoustics for data reduction. A widespread
storage system is the MiniDisc by Sony. The Mini Disc system operates with the ATRAC
technique (Adaptive Transform Acoustic Coding, [Tsu92]) and has a data rate of about

43 × 490 × 30 Hz (NTSC) = 3 × 588 × 25 Hz (CCIR) = 44.1 kHz.
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Table 1.1 Specifications of the CD system [Ben88].

Type of recording
Signal recognition Optical
Storage density 682 Mbit/in2

Audio specification
Number of channels 2
Duration Approx. 60 min.
Frequency range 20–20 000 Hz
Dynamic range >90 dB
THD <0.01%

Signal format
Sampling rate 44.1 kHz
Quantization 16-bit PCM (2’s complement)
Pre-emphasis None or 50/15 µs
Error Correction CIRC
Data rate 2.034 Mbit/s
Modulation EFM
Channel bit rate 4.3218 Mbit/s
Redundancy 30%

Mechanical specification
Diameter 120 mm
Thickness 1.2 mm
Diameter of the inner hole 15 mm
Program range 50–116 mm
Reading speed 1.2–1.4 m/s

500–200 r/min.

2 · 140 kbit/s for a stereo channel. A magneto-optical storage medium is used for recording.
The MP3 format was developed simultaneously, but the availability of recording and
playback systems has taken a longer time. Simple MP3 recorders and playback systems
are now available for the consumer market.

Super Audio Compact Disc (SACD)

The SACD was specified by Philips and Sony in 1999 as a further development of the
compact disc with the objective of improved sound quality. The audio frequency range of
20 kHz is perceived as a limiting audio quality factor by some human beings, and the anti-
aliasing and reconstruction filters may lead to ringing resulting from linear phase filters.
This effect follows from short audio pulses leading to audible transients of the filters.
In order to overcome these problems the audio bandwidth is extended to 100 kHz and
the sampling frequency is increased to 2.8224 MHz (64 × 44.1 kHz). With this the filter
specifications can be met with simple first-order filters. The quantization of the samples is
based on a 1-bit quantizer within a delta-sigma converter structure which uses noise shaping
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Table 1.2 Specifications of the R-DAT system [Ben88].

Type of recording
Signal recognition Magnetic
Storage capacity 2 GB

Audio specification
Number of channels 2
Duration Max. 120 min.
Frequency range 20–20 000 Hz
Dynamic range >90 dB
THD <0.01%

Signal format
Sampling rate 48, 44.1, 32 kHz
Quantization 16-bit PCM (2’s complement)
Error correction CIRC
Channel coding 8/10 modulation
Data rate 2.46 Mbit/s
Channel bit rate 9.4 Mbit/s

Mechanical specification
Tapewidth of magnet 3.8 mm
Thickness 13 µm
Diameter of head drum 3 cm
Revolutions per min. 2000 r/min.
Rel. track speed 3.133 m/s

500–200 r/min.

(see Fig. 1.12). The 1-bit signal with 2.8224 MHz sampling frequency is denoted a DSD
signal (Direct Stream Digital). The DA conversion of a DSD signal into an analog signal
is accomplished with a simple analog first-order low-pass. The storage of DSD signals is
achieved by a special compact disc (Fig. 1.13) with a CD layer in PCM format and an HD
layer (High Density) with a DVD 4.38 GByte layer. The HD layer stores a stereo signal
in 1-bit DSD format and a 6-channel 1-bit signal with a lossless compression technique
(Direct Stream Transfer DST) [Jan03]. The CD layer of the SACD can be replayed with
a conventional CD player, whereas special SACD players can replay the HD layer. An
extensive discussion of 1-bit delta-sigma techniques can be found in [Lip01a, Lip01b,
Van01, Lip02, Van04].

1-bi t
DSD

Memory

DSD-
Analog

x(t)
Analog-

DSD

1-bi t

64.fS

y(t)1-bi t

64.fS

Figure 1.12 SACD system.
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Protection layer

CD Layer

Plastic

HD Layer

Laser Scanner

Plastic

Figure 1.13 Layer of the SACD.

Digital Versatile Disc – Audio (DVD-A)

To increase the storage capacity of the CD the Digital Versatile Disc (DVD) was developed.
The physical dimensions are identical to the CD. The DVD has two layers with one or
two sides, and the storage capacity per side has been increased. For a one-sided version
for audio applications the storage capacity is 4.7 GB. A comparison of specifications for
different disc media is shown in Table 1.3. Besides stereo signals with different sampling
rates and word-lengths a variety of multi-channel formats can be stored. For data reduction
a lossless compression technique, MLP (Meridian Lossless Packing), is applied. The
improved audio quality compared to the CD audio is based on the higher sampling rates
and word-lengths and the multichannel features of the DVD-A.

Table 1.3 Specifications of CD, SACD and DVD-A.

Parameter CD SACD DVD-A

Coding 16-bit PCM 1-bit DSD 16-/20-/24-bit PCM
Sampling rate 44.1 kHz 2.8224 MHz 44.1/48/88.2/96/176.4/192 kHz
Channels 2 2–6 1–6
Compression No Yes (DST) Yes (MLP)
Recording time 74 min. 70–80 min. 62–843 min.
Frequency range 20–20 000 Hz 20–100 000 Hz 20–96 000 Hz
Dynamic range 96 dB 120 dB 144 dB
Copy protection No Yes Yes

1.4 Audio Components at Home

Domestic digital storage media are already in use, like compact discs, personal computers
and MP3 players, which have digital outputs, and can be connected to digital post-
processing systems right up to the loudspeakers. The individual tone control consists of
the following processing.
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Equalizer

Spectral modification of the music signal in amplitude and phase and the automatic
correction of the frequency response from loudspeaker to listening environment are desired.

Room Simulation

The simulation of room impulse responses and the processing of music signals with special
room impulse response are used to give an impression of a room like a concert hall, a
cathedral or a jazz club.

Surround Systems

Besides the reproduction of stereo signals from a CD over two frontal loudspeakers, more
than two channels will be recorded in the prospective digital recording systems [Lin93].
This is already illustrated in the sound production for cinema movies where, besides the
stereo signal (L, R), a middle channel (M) and two additional room signals (LB, RB )
are recorded. These surround systems are also used in the prospective digital television
systems. The ambisonics technique [Ger85] is a recording technique that allows three-
dimensional recording and reproduction of sound.

Digital Amplifier Concepts

The basis of a digital amplifier is pulse width modulation as shown in Fig. 1.14. With the
help of a fast counter, a pulse width modulated signal is formed out of the w-bit linearly
quantized signal. Single-sided and double-sided modulated conversion are used and they
are represented by two and three states, respectively. Single-sided modulation (2 states, −1
and +1) is performed by a counter which counts upward from zero with multiples of the
sampling rate. The number range of the PCM signal from −1 to +1 is directly mapped
onto the counter. The duration of the pulse width is controlled by a comparator. For pulse
width modulation with three states (−1, 0, +1), the sign of the PCM signal determines the
state. The pulse width is determined by a mapping of the number range from 0 to 1 onto
a counter. For double-sided modulation, an upward/downward counter is needed which
has to be clocked at twice the rate compared with single-sided modulation. The allocation
of pulse widths is shown in Fig. 1.14. In order to reduce the clock rate for the counter,
pulse width modulation is carried out after oversampling (Oversampling) and noise shaping
(Noise Shaping) of the quantization error (see Fig. 1.15, [Gol90]). Thus the clock rate of
the counter is reduced to 180.6 MHz. The input signal is first upsampled by a factor of
16 and then quantized to 8-bits with third-order noise shaping. The use of pulse shaping
with delta-sigma modulation is shown in Fig. 1.16 [And92]. Here a direct conversion of the
delta-sigma modulated 1-bit signal is performed. The pulse converter shapes the envelope
of the serial data bits. The low-pass filter reconstructs the analog signal. In order to reduce
nonlinear distortion, the output signal is fed back (see Fig. 1.17, [Klu92]). New methods
for the generation of pulse width modulation try to reduce the clock rates and the high
frequency components [Str99, Str01].
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Figure 1.14 Pulse width modulation.
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Figure 1.15 Pulse width modulation with oversampling and noise shaping.
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Figure 1.16 Pulse shaping after delta-sigma modulation.

%�

&
	���
��;��	��

&����%��� "7�:=7 :

&�$

'7
:

%�

Figure 1.17 Delta-sigma modulated amplifier with feedback.

Digital Crossover

In order to perform digital crossovers for loudspeakers, a linear phase decomposition of the
signal with a special filter bank [Zöl92] is done (Fig. 1.18). In a first step, the input signal
is decomposed into its high-pass and low-pass components and the high-pass signal is fed
to a DAC over a delay unit. In the next step, the low-pass signal is further decomposed.
The individual band-pass signals and the low-pass signal are then fed to the respective
loudspeaker. Further developments for the control of loudspeakers can be found in [Kli94,
Kli98a, Kli98b, Mül99].
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Chapter 2

Quantization

Basic operations for AD conversion of a continuous-time signal x(t) are the sampling
and quantization of x(n) yielding the quantized sequence xQ(n) (see Fig. 2.1). Before
discussing AD/DA conversion techniques and the choice of the sampling frequency fS =
1/TS in Chapter 3 we will introduce the quantization of the samples x(n) with finite
number of bits. The digitization of a sampled signal with continuous amplitude is called
quantization. The effects of quantization starting with the classical quantization model are
discussed in Section 2.1. In Section 2.2 dither techniques are presented which, for low-level
signals, linearize the process of quantization. In Section 2.3 spectral shaping of quantization
errors is described. Section 2.4 deals with number representation for digital audio signals
and their effects on algorithms.

x(n)

Quantizer

x(t) x (n)QAnalog
Low-pass

fS

Sampling

Figure 2.1 AD conversion and quantization.

2.1 Signal Quantization

2.1.1 Classical Quantization Model

Quantization is described by Widrow’s quantization theorem [Wid61]. This says that a
quantizer can be modeled (see Fig. 2.2) as the addition of a uniform distributed random
signal e(n) to the original signal x(n) (see Fig. 2.2, [Wid61]). This additive model,

xQ(n) = x(n) + e(n), (2.1)

is based on the difference between quantized output and input according to the error signal

e(n) = xQ(n) − x(n). (2.2)

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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Qx(n)

x (n)=x(n)+e(n)Q

e(n)

Q

_

x (n)Q x (n)Qx(n)

x(n)

e(n)

Figure 2.2 Quantization.

This linear model of the output xQ(n) is only then valid when the input amplitude has a
wide dynamic range and the quantization error e(n) is not correlated with the signal x(n).
Owing to the statistical independence of consecutive quantization errors the autocorrelation
of the error signal is given by rEE(m) = σ 2

E · δ(m), yielding a power density spectrum
SEE(ej�) = σ 2

E .

The nonlinear process of quantization is described by a nonlinear characteristic curve as
shown in Fig. 2.3a, where Q denotes the quantization step. The difference between output
and input of the quantizer provides the quantization error e(n) = xQ(n) − x(n), which is
shown in Fig. 2.3b. The uniform probability density function (PDF) of the quantization
error is given (see Fig. 2.3b) by

pE(e) = 1

Q
rect

(
e

Q

)
. (2.3)

�
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Figure 2.3 (a) Nonlinear characteristic curve of a quantizer. (b) Quantization error e and its
probability density function (PDF) pE(e).

The mth moment of a random variable E with a PDF pE(e) is defined as the expected
value of Em:

E{Em} =
∫ ∞

−∞
empE(e) de. (2.4)
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For a uniform distributed random process, as in (2.3), the first two moments are given by

mE = E{E} = 0 mean value (2.5)

σ 2
E = E{E2} = Q2

12
variance. (2.6)

The signal-to-noise ratio

SNR = 10 log10

(
σ 2

X

σ 2
E

)
dB (2.7)

is defined as the ratio of signal power σ 2
X to error power σ 2

E .
For a quantizer with input range ±xmax and word-length w, the quantization step size

can be expressed as
Q = 2xmax/2w. (2.8)

By defining a peak factor,

PF = xmax

σX

= 2w−1Q

σX

, (2.9)

the variances of the input and the quantization error can be written as

σ 2
X = x2

max

P 2
F

, (2.10)

σ 2
E = Q2

12
= 1

12

x2
max

22w
22 = 1

3
x2

max2−2w. (2.11)

The signal-to-noise ratio is then given by

SNR = 10 log10

(
x2

max/P
2
F

1
3x2

max2−2w

)
= 10 log10

(
22w 3

P 2
F

)
= 6.02w − 10 log10(P

2
F /3) dB. (2.12)

A sinusoidal signal (PDF as in Fig. 2.4) with PF = √
2 gives

SNR = 6.02w + 1.76 dB. (2.13)

For a signal with uniform PDF (see Fig. 2.4) and PF = √
3 we can write

SNR = 6.02w dB, (2.14)

and for a Gaussian distributed signal (probability of overload <10−5 leads to PF = 4.61,
see Fig. 2.5), it follows that

SNR = 6.02w − 8.5 dB. (2.15)

It is obvious that the signal-to-noise ratio depends on the PDF of the input. For digital
audio signals that exhibit nearly Gaussian distribution, the maximum signal-to-noise ratio
for given word-length w is 8.5 dB lower than the rule-of-thumb formula (2.14) for the
signal-to-noise ratio.
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Figure 2.4 Probability density function (sinusoidal signal and signal with uniform PDF).
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Figure 2.5 Probability density function (signal with Gaussian PDF).

2.1.2 Quantization Theorem

The statement of the quantization theorem for amplitude sampling (digitizing the ampli-
tude) of signals was given by Widrow [Wid61]. The analogy for digitizing the time axis is
the sampling theorem due to Shannon [Sha48]. Figure 2.6 shows the amplitude quantization
and the time quantization. First of all, the PDF of the output signal of a quantizer is
determined in terms of the PDF of the input signal. Both probability density functions
are shown in Fig. 2.7. The respective characteristic functions (Fourier transform of a PDF)
of the input and output signals form the basis for Widrow’s quantization theorem.
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First-order Statistics of the Quantizer Output

Quantization of a continuous-amplitude signal x with PDF pX(x) leads to a discrete-
amplitude signal y with PDF pY (y) (see Fig. 2.8). The continuous PDF of the input is
sampled by integrating over all quantization intervals (zone sampling). This leads to a
discrete PDF of the output.

In the quantization intervals, the discrete PDF of the output is determined by the
probability

W [kQ] = W

[
−Q

2
+ kQ ≤ x <

Q

2
+ kQ

]
=
∫ Q/2+kQ

−Q/2+kQ
pX(x) dx. (2.16)
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Figure 2.8 Zone sampling of the PDF.

For the intervals k = 0, 1, 2, it follows that

pY (y) = δ(0)

∫ Q/2

−Q/2
pX(x) dx, −Q

2
≤ y <

Q

2
,

= δ(y − Q)

∫ Q/2+Q

−Q/2+Q

pX(x) dx, −Q

2
+ Q ≤ y <

Q

2
+ Q,

= δ(y − 2Q)

∫ Q/2+2Q

−Q/2+2Q

pX(x) dx, −Q

2
+ 2Q ≤ y <

Q

2
+ 2Q.

The summation over all intervals gives the PDF of the output

pY (y) =
∞∑

k=−∞
δ(y − kQ)W(kQ) (2.17)

=
∞∑

k=−∞
δ(y − kQ)W(y), (2.18)

where

W(kQ) =
∫ Q/2+kQ

−Q/2+kQ
pX(x) dx, (2.19)

W(y) =
∫ ∞

−∞
rect

(
y − x

Q

)
pX(x) dx (2.20)

= rect

(
y

Q

)
∗ pX(y). (2.21)

Using

δQ(y) =
∞∑

k=−∞
δ(y − kQ), (2.22)

the PDF of the output is given by

pY (y) = δQ(y)

[
rect

(
y

Q

)
� pX(y)

]
. (2.23)
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The PDF of the output can hence be determined by convolution of a rect function [Lip92]
with the PDF of the input. This is followed by an amplitude sampling with resolution Q as
described in (2.23) (see Fig. 2.9).
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)
�

Figure 2.9 Determining PDF of the output.

Using FT {f1(t) · f2(t)} = 1
2π

F1(jω) ∗ F2(jω), the characteristic function (Fourier
transform of pY (y)) can be written, with uo = 2π/Q, as

PY (ju) = 1

2π
uo

∞∑
k=−∞

δ(u − kuo) ∗
[
Q

sin
(
u

Q
2

)
uQ

2

· PX(ju)

]
(2.24)

=
∞∑

k=−∞
δ(u − kuo) ∗

[
sin
(
u

Q
2

)
u

Q
2

· PX(ju)

]
(2.25)

PY (ju) =
∞∑

k=−∞
PX(ju − jkuo)

sin
[
(u − kuo)

Q
2

]
(u − kuo)

Q
2

. (2.26)

Equation (2.26) describes the sampling of the continuous PDF of the input. If the
quantization frequency uo = 2π/Q is twice the highest frequency of the characteristic
function PX(ju) then periodically recurring spectra do not overlap. Hence, a reconstruction
of the PDF of the input pX(x) from the quantized PDF of the output pY (y) is possible (see
Fig. 2.10). This is known as Widrow’s quantization theorem. Contrary to the first sampling
theorem (Shannon’s sampling theorem, ideal amplitude sampling in the time domain)
FA(jω) = 1

T

∑∞
k=−∞ F(jω − jkωo), it can be observed that there is an additional

multiplication of the periodically characteristic function with
sin
[
(u−kuo)

Q
2

]
(u−kuo)

Q
2

(see (2.26)).

If the base-band of the characteristic function (k = 0)

PY (ju) = PX(ju)
sin
(
uQ

2

)
uQ

2︸ ︷︷ ︸
PE(ju)

(2.27)

is considered, it is observed that it is a product of two characteristic functions. The
multiplication of characteristic functions leads to the convolution of PDFs from which
the addition of two statistically independent signals can be concluded. The characteristic
function of the quantization error is thus

PE(ju) = sin
(
uQ

2

)
uQ

2

, (2.28)
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Figure 2.10 Spectral representation.

and the PDF

pE(e) = 1

Q
rect

(
e

Q

)
(2.29)

(see Fig. 2.11).
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Figure 2.11 PDF and characteristic function of quantization error.

The modeling of the quantization process as an addition of a statistically independent
noise signal to the input signal leads to a continuous PDF of the output (see Fig. 2.12,
convolution of PDFs and sampling in the interval Q gives the discrete PDF of the output).
The PDF of the discrete-valued output comprises Dirac pulses at distance Q with values
equal to the continuous PDF (see (2.23)). Only if the quantization theorem is valid can the
continuous PDF be reconstructed from the discrete PDF.

Q
x(n)

x(n)+e(n)x(n)

e(n)

pY(y)

yQ

pX+E(y)= p pX E*
y(n)

Figure 2.12 PDF of model.

In many cases, it is not necessary to reconstruct the PDF of the input. It is sufficient to
calculate the moments of the input from the output. The mth moment can be expressed in



2.1 Signal Quantization 29

terms of the PDF or the characteristic function:

E{Ym} =
∫ ∞

−∞
ympY (y) dy (2.30)

= (−j)m
dmPY (ju)

dum

∣∣∣∣
u=0

. (2.31)

If the quantization theorem is satisfied then the periodic terms in (2.26) do not overlap and
the mth derivative of PY (ju) is solely determined by the base-band1 so that, with (2.26),

E{Ym} = (−j)m
dm

dum
PX(ju)

sin
(
uQ

2

)
uQ

2

∣∣∣∣
u=0

. (2.32)

With (2.32), the first two moments can be determined as

mY = E{Y } = E{X}, (2.33)

σ 2
Y = E{Y 2} = E{X2}︸ ︷︷ ︸

σ 2
X

+ Q2

12︸︷︷︸
σ 2

E

. (2.34)

Second-order Statistics of Quantizer Output

In order to describe the properties of the output in the frequency domain, two output values
Y1 (at time n1) and Y2 (at time n2) are considered [Lip92]. For the joint density function,

pY1Y2(y1, y2) = δQQ(y1, y2)

[
rect

(
y1

Q
,
y2

Q

)
� pX1X2(y1, y2)

]
, (2.35)

with
δQQ(y1, y2) = δQ(y1) · δQ(y2) (2.36)

and

rect

(
y1

Q
,

y2

Q

)
= rect

(
y1

Q

)
· rect

(
y2

Q

)
. (2.37)

For the two-dimensional Fourier transform, it follows that

PY1Y2(ju1, ju2) =
∞∑

k=−∞

∞∑
l=−∞

δ(u1 − kuo)δ(u2 − luo)

∗
[

sin
(
u1

Q
2

)
u1

Q
2

· sin
(
u2

Q
2

)
u2

Q
2

· PX1X2(ju1, ju2)

]
(2.38)

=
∞∑

k=−∞

∞∑
l=−∞

PX1X2(ju1 − jkuo, ju2 − j luo)

· sin
[
(u1 − kuo)

Q
2

]
(u1 − kuo)

Q
2

· sin
[
(u2 − luo)

Q
2

]
(u2 − luo)

Q
2

. (2.39)

1This is also valid owing to the weaker condition of Sripad and Snyder [Sri77] discussed in the next section.



30 Quantization

Similar to the one-dimensional quantization theorem, a two-dimensional theorem
[Wid61] can be formulated: the joint density function of the input can be reconstructed
from the joint density function of the output, if PX1X2(ju1, ju2) = 0 for u1 ≥ uo/2 and
u2 ≥ uo/2. Here again, the moments of the joint density function can be calculated as
follows:

E{Ym
1 Yn

2 } = (−j)m+n ∂m+n

∂um
1 ∂un

2
PX1X2(ju1, ju2)

sin
(
u1

Q
2

)
u1

Q
2

sin
(
u2

Q
2

)
u2

Q
2

∣∣∣∣
u1=0,u2=0

. (2.40)

From this, the autocorrelation function with m = n2 − n1 can be written as

rYY (m) = E{Y1Y2}(m) =

E{X2} + Q2

12
, m = 0,

E{X1X2}(m), elsewhere
(2.41)

(for m = 0 we obtain (2.34)).

2.1.3 Statistics of Quantization Error

First-order Statistics of Quantization Error

The PDF of the quantization error depends on the PDF of the input and is dealt with in
the following. The quantization error e = xQ − x is restricted to the interval

[−Q
2 , Q

2

]
. It

depends linearly on the input (see Fig. 2.13). If the input value lies in the interval
[−Q

2 ,
Q
2

]
then the error is e = 0 − x. For the PDF we obtain pE(e) = pX(e). If the input value lies
in the interval

[−Q
2 + Q,

Q
2 + Q

]
then the quantization error is e = Q�Q−1x + 0.5� − x

and is again restricted to
[−Q

2 , Q
2

]
. The PDF of the quantization error is consequently

pE(e) = pX(e + Q) and is added to the first term. For the sum over all intervals we can
write

pE(e) =




∞∑
k=−∞

pX(e − kQ), −Q

2
≤ e <

Q

2
,

0, elsewhere.

(2.42)
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Figure 2.13 Probability density function and quantization error.

Because of the restricted values of the variable of the PDF, we can write

pE(e) = rect

(
e

Q

) ∞∑
k=−∞

pX(e − kQ) (2.43)

= rect

(
e

Q

)
[pX(e) ∗ δQ(e)]. (2.44)
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The PDF of the quantization error is determined by the PDF of the input and can be
computed by shifting and windowing a zone. All individual zones are summed up for
calculating the PDF of the quantization error [Lip92]. A simple graphical interpretation
of this overlapping is shown in Fig. 2.14. The overlapping leads to a uniform distribution
of the quantization error if the input PDF pX(x) is spread over a sufficient number of
quantization intervals.

)1��)1� )1��)1�

)1��)1� '

� �

����7':0

�����7�:

Figure 2.14 Probability density function of the quantization error.

For the Fourier transform of the PDF from (2.44) it follows that

PE(ju) = 1

2π
Q

sin
(
uQ

2

)
uQ

2

∗
[
PX(ju)

2π

Q

∞∑
k=−∞

δ(u − kuo)

]
(2.45)

= sin
(
u

Q
2

)
u

Q
2

∗
[ ∞∑

k=−∞
PX(jkuo)δ(u − kuo)

]
(2.46)

=
∞∑

k=−∞
PX(jkuo)

[
sin
(
uQ

2

)
u

Q
2

∗ δ(u − kuo)

]
(2.47)

PE(ju) =
∞∑

k=−∞
PX(jkuo)

sin
[
(u − kuo)

Q
2

]
(u − kuo)

Q
2

. (2.48)

If the quantization theorem is satisfied, i.e. if PX(ju) = 0 for u > uo/2, then there is only
one non-zero term (k = 0 in (2.48)). The characteristic function of the quantization error is
reduced, with PX(0) = 1, to

PE(ju) = sin
(
uQ

2

)
uQ

2

. (2.49)
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Hence, the PDF of the quantization error is

pE(e) = 1

Q
rect

(
e

Q

)
. (2.50)

Sripad and Snyder [Sri77] have modified the sufficient condition of Widrow (band-limited
characteristic function of input) for a quantization error of uniform PDF by the weaker
condition

PX(jkuo) = PX

(
j

2πk

Q

)
= 0 for all k �= 0. (2.51)

The uniform distribution of the input PDF,

pX(x) = 1

Q
rect

(
x

Q

)
, (2.52)

with characteristic function

PX(ju) = sin
(
uQ

2

)
uQ

2

, (2.53)

does not satisfy Widrow’s condition for a band-limited characteristic function, but instead
the weaker condition,

PX

(
j

2πk

Q

)
= sin(πk)

πk
= 0, for all k �= 0, (2.54)

is fulfilled. From this follows the uniform PDF (2.49) of the quantization error. The weaker
condition from Sripad and Snyder extends the class of input signals for which a uniform
PDF of the quantization error can be assumed.

In order to show the deviation from the uniform PDF of the quantization error as a
function of the PDF of the input, (2.48) can be written as

PE(ju) = PX(0)
sin
[
uQ

2

]
uQ

2

+
∞∑

k=−∞,k �=0

PX

(
j

2πk

Q

)
sin
[
(u − kuo)

Q
2

]
(u − kuo)

Q
2

= sin
[
uQ

2

]
u

Q
2

+
∞∑

k=−∞,k �=0

PX

(
j

2πk

Q

)
sin
[
uQ

2

]
u

Q
2

∗ δ(u − ku0). (2.55)

The inverse Fourier transform yields

pE(e) = 1

Q
rect

(
e

Q

)[
1 +

∞∑
k=−∞,k �=0

PX

(
j

2πk

Q

)
exp

(
j

2πke

Q

)]
(2.56)

=




1

Q

[
1 +

∞∑
k �=0

PX

(
j

2πk

Q

)
exp

(
j

2πke

Q

)]
, −Q

2
≤ e <

Q

2
,

0, elsewhere.

(2.57)

Equation (2.56) shows the effect of the input PDF on the deviation from a uniform PDF.
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Second-order Statistics of Quantization Error

To describe the spectral properties of the error signal, two values E1 (at time n1) and E2
(at time n2) are considered [Lip92]. The joint PDF is given by

pE1E2(e1, e2) = rect

(
e1

Q
,

e2

Q

)
[pX1X2(e1, e2) ∗ δQQ(e1, e2)]. (2.58)

Here δQQ(e1, e2) = δQ(e1) · δQ(e2) and rect(e1/Q, e2/Q) = rect(e1/Q) · rect(e2/Q). For
the Fourier transform of the joint PDF, a similar procedure to that shown by (2.45)–(2.48)
leads to

PE1E2(ju1, ju2) =
∞∑

k1=−∞

∞∑
k2=−∞

PX1X2(jk1uo, jk2uo)

· sin
[
(u1 − k1uo)

Q
2

]
(u1 − k1uo)

Q
2

sin
[
(u2 − k2uo)

Q
2

]
(u2 − k2uo)

Q
2

. (2.59)

If the quantization theorem and/or the Sripad–Snyder condition

PX1X2(jk1uo, jk2uo) = 0 for all k1, k2 �= 0 (2.60)

are satisfied then

PE1E2(ju1, ju2) = sin
[
u1

Q
2

]
u1

Q
2

sin
[
u2

Q
2

]
u2

Q
2

. (2.61)

Thus, for the joint PDF of the quantization error,

pE1E2(e1, e2) = 1

Q
rect

(
e1

Q

)
· 1

Q
rect

(
e2

Q

)
, −Q

2
≤ e1, e2 <

Q

2
(2.62)

= pE1(e1) · pE2(e2). (2.63)

Due to the statistical independence of quantization errors (2.63),

E{Em
1 En

2 } = E{Em
1 } · E{En

2 }. (2.64)

For the moments of the joint PDF,

E{Em
1 En

2 } = (−j)m+n ∂m+n

∂um
1 ∂un

2
PE1E2(u1, u2)

∣∣∣∣
u1=0,u2=0

. (2.65)

From this, it follows for the autocorrelation function with m = n2 − n1 that

rEE(m) = E{E1E2} =
{

E{E2}, m = 0,

E{E1E2}, elsewhere
(2.66)

=




Q2

12
, m = 0,

0, elsewhere

(2.67)

= Q2

12︸︷︷︸
σ 2

E

δ(m). (2.68)
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The power density spectrum of the quantization error is then given by

SEE(ej�) =
+∞∑

m=−∞
rEE(m) e−j�m = Q2

12
, (2.69)

which is equal to the variance σ 2
E = Q2/12 of the quantization error (see Fig. 2.15).

�
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�2
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.�(m)

Figure 2.15 Autocorrelation rEE(m) and power density spectrum SEE(ej�) of quantization
error e(n).

Correlation of Signal and Quantization Error

To describe the correlation of the signal and the quantization error [Sri77], the second
moment of the output with (2.26) is derived as follows:

E{Y 2} = (−j)2 d2PY (ju)

du2

∣∣∣∣
u=0

(2.70)

= (−j)2
∞∑

k=−∞

[
P̈X

(
−2πk

Q

)
sin(πk)

πk
+ QṖX

(
−2πk

Q

)
sin(πk) − πk cos(πk)

π2k2

+ Q2

4
PX

(
−2πk

Q

)
(2 − π2k2) sin(πk) − 2πk cos(πk)

π3k3

]
(2.71)

= E{X2} + Q

π

∞∑
k=−∞,k �=0

(−1)k

k
ṖX

(
−2πk

Q

)
+ E{E2}. (2.72)

With the quantization error e(n) = y(n) − x(n),

E{Y 2} = E{X2} + 2E{X · E} + E{E2}, (2.73)

where the term E{X · E}, with (2.72), is written as

E{X · E} = Q

2π

∞∑
k=−∞,k �=0

(−1)k

k
ṖX

(
−2πk

Q

)
. (2.74)

With the assumption of a Gaussian PDF of the input we obtain

pX(x) = 1√
2πσ

exp

(−x2

2σ 2

)
(2.75)
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with the characteristic function

PX(ju) = exp

(−u2σ 2

2

)
. (2.76)

Using (2.57), the PDF of the quantization error is then given by

pE(e) =




1

Q

[
1 + 2

∞∑
k=1

cos

(
2πke

Q

)
exp

(
−2π2k2σ 2

Q2

)]
, −Q

2
≤ e <

Q

2
,

0, elsewhere.

(2.77)

Figure 2.16a shows the PDF (2.77) of the quantization error for different variances of the
input.
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Figure 2.16 (a) PDF of quantization error for different standard deviations of a Gaussian PDF input.
(b) Variance of quantization error for different standard deviations of a Gaussian PDF input.

For the mean value and the variance of a quantization error, it follows using (2.77) that
E{E} = 0 and

E{E2} =
∫ ∞

−∞
e2pE(e) de = Q2

12

[
1 + 12

π2

∞∑
k=1

(−1)k

k2
exp

(
−2π2k2σ 2

Q2

)]
. (2.78)

Figure 2.16b shows the variance of the quantization error (2.78) for different variances of
the input.

For a Gaussian PDF input as given by (2.75) and (2.76), the correlation (see (2.74))
between input and quantization error is expressed as

E{X · E} = 2σ 2
∞∑

k=1

(−1)k exp

(
−2π2k2σ 2

Q2

)
. (2.79)

The correlation is negligible for large values of σ/Q.
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2.2 Dither

2.2.1 Basics

The requantization (renewed quantization of already quantized signals) to limited word-
lengths occurs repeatedly during storage, format conversion and signal processing algo-
rithms. Here, small signal levels lead to error signals which depend on the input. Owing
to quantization, nonlinear distortion occurs for low-level signals. The conditions for the
classical quantization model are not satisfied anymore. To reduce these effects for signals
of small amplitude, a linearization of the nonlinear characteristic curve of the quantizer is
performed. This is done by adding a random sequence d(n) to the quantized signal x(n)

(see Fig. 2.17) before the actual quantization process. The specification of the word-length
is shown in Fig. 2.18. This random signal is called dither. The statistical independence of
the error signal from the input is not achieved, but the conditional moments of the error
signal can be affected [Lip92, Ger89, Wan92, Wan00].
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Figure 2.17 Addition of a random sequence before a quantizer.
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Figure 2.18 Specification of the word-length.

The sequence d(n), with amplitude range (−Q/2 ≤ d(n) ≤ Q/2), is generated with
the help of a random number generator and is added to the input. For a dither value with
Q = 2−(w−1):

dk = k2−rQ, −2s−1 ≤ k ≤ 2s−1 − 1. (2.80)

The index k of the random number dk characterizes the value from the set of N = 2s

possible numbers with the probability

P(dk) =
{

2−s, −2s−1 ≤ k ≤ 2s−1 − 1,

0, elsewhere.
(2.81)

With the mean value d =∑k dkP (dk), the variance σ 2
D =∑k[dk − d]2P(dk) and the

quadratic mean d2 =∑k d2
kP (dk), we can rewrite the variance as σ 2

d = d2 − d
2
.

For a static input amplitude V and the dither value dk the rounding operation [Lip86] is
expressed as

g(V + dk) = Q

⌊
V + dk

Q
+ 0.5

⌋
. (2.82)
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For the mean of the output g(V ) as a function of the input V , we can write

g(V ) =
∑

k

g(V + dk)P (dk). (2.83)

The quadratic mean of the output g2(V ) for input V is given by

g2(V ) =
∑

k

g2(V + dk)P (dk). (2.84)

For the variance d2
R(V ) for input V ,

d2
R(V ) =

∑
k

{g(V + dk) − g(V )}2P(dk) = g2(V ) − {g(V )}2. (2.85)

The above equations have the input V as a parameter. Figures 2.19 and 2.20 illustrate the
mean output g(V ) and the standard deviation dR(V ) within a quantization step size, given
by (2.83), (2.84) and (2.85). The examples of rounding and truncation demonstrate the
linearization of the characteristic curve of the quantizer. The coarse step size is replaced
by a finer one. The quadratic deviation from the mean output d2

R(V ) is termed noise
modulation. For a uniform PDF dither, this noise modulation depends on the amplitude
(see Figs. 2.19 and 2.20). It is maximum in the middle of the quantization step size
and approaches zero toward the end. The linearization and the suppression of the noise
modulation can be achieved by a triangular PDF dither with bipolar characteristic [Van89]
and rounding operation (see Fig. 2.20). Triangular PDF dither is obtained by adding two
statistically independent dither signals with uniform PDF (convolution of PDFs). A dither
signal with higher-order PDF is not necessary for audio signals [Lip92, Wan00].
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Figure 2.19 Truncation – linearizing and suppression of noise modulation (s = 4, m = 0).

The total noise power for this quantization technique consists of the dither power and
the power of the quantization error [Lip86]. The following noise powers are obtained by
integration with respect to V .
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Figure 2.20 Rounding – linearizing and suppression of noise modulation (s = 4, m = 1).

1. Mean dither power d2:

d2 = 1

Q

∫ Q

0
d2
R(V ) dV (2.86)

= 1

Q

∫ Q

0

∑
k

{g(V + dk) − g(V )}2P(dk) dV . (2.87)

(This is equal to the deviation from mean output in accordance with (2.83).)

2. Mean of total noise power d2
tot:

d2
tot = 1

Q

∫ Q

0

∑
k

{g(V + dk) − V }2P(dk) dV . (2.88)

(This is equal to the deviation from an ideal straight line.)

In order to derive a relationship between d2
tot and d2, the quantization error given by

Q(V + dk) = g(V + dk) − (V + dk) (2.89)

is used to rewrite (2.88) as

d2
tot =

∑
k

P (dk)
1

Q

∫ Q

0
(Q2(V + dk) + 2dkQ(V + dk) + d2

k ) dV (2.90)

=
∑

k

P (dk)
1

Q

∫ Q

0
Q2(V + dk) dV + 2

∑
k

dkP (dk)
1

Q

∫ Q

0
Q(V + dk) dV

+
∑

k

d2
k P (dk)

1

Q

∫ Q

0
dV . (2.91)
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The integrals in (2.91) are independent of dk . Moreover,
∑

k P (dk) = 1. With the mean
value of the quantization error

e = 1

Q

∫ Q

0
Q(V ) dV (2.92)

and the quadratic mean error

e2 = 1

Q

∫ Q

0
Q2(V ) dV, (2.93)

it is possible to rewrite (2.91) as

d2
tot = e2 + 2de + d2. (2.94)

With σ 2
E = e2 − e2 and σ 2

D = d2 − d
2
, (2.94) can be written as

d2
tot = σ 2

E + (d + e)2 + σ 2
D . (2.95)

Equations (2.94) and (2.95) describe the total noise power as a function of the quantization
(e, e2, σ 2

E) and the dither addition (d, d2, σ 2
D). It can be seen that for zero-mean quantiza-

tion, the middle term in (2.95) results in d + e = 0. The acoustically perceptible part of the
total error power is represented by σ 2

e and σ 2
d .

2.2.2 Implementation

The random sequence d(n) is generated with the help of a random number generator
with uniform PDF. For generating a triangular PDF random sequence, two independent
uniform PDF random sequences d1(n) and d2(n) can be added. In order to generate a
triangular high-pass dither, the dither value d1(n) is added to −d1(n − 1). Thus, only one
random number generator is required. In conclusion, the following dither sequences can be
implemented:

dRECT(n) = d1(n), (2.96)

dTRI(n) = d1(n) + d2(n), (2.97)

dHP(n) = d1(n) − d1(n − 1). (2.98)

The power density spectra of triangular PDF dither and triangular PDF HP dither are shown
in Fig. 2.21. Figure 2.22 shows histograms of a uniform PDF dither and a triangular PDF
high-pass dither together with their respective power density spectra. The amplitude range
of a uniform PDF dither lies between ±Q/2, whereas it lies between ±Q for triangular
PDF dither. The total noise power for triangular PDF dither is doubled.

2.2.3 Examples

The effect of the input amplitude of the quantizer is shown in Fig. 2.23 for a 16-bit
quantizer (Q = 2−15). A quantized sinusoidal signal with amplitude 2−15 (1-bit amplitude)
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Figure 2.21 Normalized power density spectrum for triangular PDF dither (TRI) with d1(n) + d2(n)

and triangular PDF high-pass dither (HP) with d1(n) − d1(n − 1).

and frequency f/fS = 64/1024 is shown in Fig. 2.23a,b for rounding and truncation.
Figure 2.23c,d shows their corresponding spectra. For truncation, Fig. 2.23c shows the
spectral line of the signal and the spectral distribution of the quantization error with the
harmonics of the input signal. For rounding (Fig. 2.23d with special signal frequency
f/fS = 64/1024), the quantization error is concentrated in uneven harmonics.

In the following, only the rounding operation is used. By adding a uniform PDF random
signal to the actual signal before quantization, the quantized signal shown in Fig. 2.24a
results. The corresponding power density spectrum is illustrated in Fig. 2.24c. In the time
domain, it is observed that the 1-bit amplitudes approach zero so that the regular pattern of
the quantized signal is affected. The resulting power density spectrum in Fig. 2.24c shows
that the harmonics do not occur anymore and the noise power is uniformly distributed over
the frequencies. For triangular PDF dither, the quantized signal is shown in Fig. 2.24b.
Owing to triangular PDF, amplitudes ±2Q occur besides the signal values ±Q and zero.
Figure 2.24d shows the increase of the total noise power.

In order to illustrate the noise modulation for uniform PDF dither, the amplitude of
the input is reduced to A = 2−18 and the frequency is chosen as f/fS = 14/1024. This
means that input amplitude to the quantizer is 0.25 bit. For a quantizer without additive
dither, the quantized output signal is zero. For RECT dither, the quantized signal is shown
in Fig. 2.25a. The input signal with amplitude 0.25Q is also shown. The power density
spectrum of the quantized signal is shown in Fig. 2.25c. The spectral line of the signal and
the uniform distribution of the quantization error can be seen. But in the time domain,
a correlation between positive and negative amplitudes of the input and the quantized
positive and negative values of the output can be observed. In hearing tests this noise
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Figure 2.22 (a,b) Histogram and (c,d) power density spectrum of uniform PDF dither (RECT) with
d1(n) and triangular PDF high-pass dither (HP) with d1(n) − d1(n − 1).

modulation occurs if the amplitude of the input is decreased continuously and falls below
the amplitude of the quantization step. This process occurs for all fade-out processes that
occur in speech and music signals. For positive low-amplitude signals, two output states,
zero and Q, occur, and for negative low-amplitude signals, the output states zero and −Q,
occur. This is observed as a disturbing rattle which is overlapped to the actual signal. If the
input level is further reduced the quantized output approaches zero.

In order to reduce this noise modulation at low levels, a triangular PDF dither is
used. Figure 2.25b shows the quantized signal and Fig. 2.25d shows the power density
spectrum. It can be observed that the quantized signal has an irregular pattern. Hence a
direct association of positive half-waves with the positive output values as well as vice
versa is not possible. The power density spectrum shows that spectral line of the signal
along with an increase in noise power owing to triangular PDF dither. In acoustic hearing
tests, the use of triangular PDF dither results in a constant noise floor even if the input level
is reduced to zero.
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Figure 2.23 One-bit amplitude – quantizer with truncation (a,c) and rounding (b,d).

2.3 Spectrum Shaping of Quantization – Noise Shaping

Using the linear model of a quantizer in Fig. 2.26 and the relations

e(n) = y(n) − x(n), (2.99)

y(n) = [x(n)]Q (2.100)

= x(n) + e(n), (2.101)

the quantization error e(n) may be isolated and fed back through a transfer function H(z)

as shown in Fig. 2.27. This leads to the spectral shaping of the quantization error as given
by

y(n) = [x(n) − e(n) ∗ h(n)]Q (2.102)

= x(n) + e(n) − e(n) ∗ h(n), (2.103)

e1(n) = y(n) − x(n) (2.104)

= e(n) ∗ (δ(n) − h(n)), (2.105)
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Figure 2.24 One-bit amplitude – rounding with RECT dither (a,c) and TRI dither (b,d).

and the corresponding Z-transforms

Y (z) = X(z) + E(z)(1 − H(z)) (2.106)

E1(z) = E(z)(1 − H(z)). (2.107)

A simple spectrum shaping of the quantization error e(n) is achieved by feeding back with
H(z) = z−1 as shown in Fig. 2.28, and leads to

y(n) = [x(n) − e(n − 1)]Q (2.108)

= x(n) − e(n − 1) + e(n), (2.109)

e1(n) = y(n) − x(n) (2.110)

= e(n) − e(n − 1), (2.111)

and the Z-transforms

Y (z) = X(z) + E(z)(1 − z−1), (2.112)

E1(z) = E(z)(1 − z−1). (2.113)
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Figure 2.25 0.25-bit amplitude – rounding with RECT dither (a,c) and TRI dither (b,d).
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Figure 2.26 Linear model of quantizer.

Equation (2.113) shows a high-pass weighting of the original error signal e(n). By choosing
H(z) = z−1(−2 + z−1), second-order high-pass weighting given by

E2(z) = E(z)(1 − 2z−1 + z−2) (2.114)

can be achieved. The power density spectrum of the error signal for the two cases is given by

SE1E1(e
j�) = |1 − e−j�|2SEE(ej�), (2.115)

SE2E2(e
j�) = |1 − 2 e−j� + e−j2�|2SEE(ej�). (2.116)
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Figure 2.29 shows the weighting of power density spectrum by this noise shaping
technique.
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Figure 2.27 Spectrum shaping of quantization error.
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Figure 2.28 High-pass spectrum shaping of quantization error.
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By adding a dither signal d(n) (see Fig. 2.30), the output and the error are given by

y(n) = [x(n) + d(n) − e(n − 1)]Q (2.117)

= x(n) + d(n) − e(n − 1) + e(n) (2.118)
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and

e1(n) = y(n) − x(n) (2.119)

= d(n) + e(n) − e(n − 1). (2.120)

For the Z-transforms we write

Y (z) = X(z) + E(z)(1 − z−1) + D(z), (2.121)

E1(z) = E(z)(1 − z−1) + D(z). (2.122)

The modified error signal e1(n) consists of the dither and the high-pass shaped quantization
error.
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Figure 2.30 Dither and spectrum shaping.

By moving the addition (Fig. 2.31) of the dither directly before the quantizer, a high-
pass spectrum shaping is obtained for both the error signal and the dither. Here the
following relationships hold:

y(n) = [x(n) + d(n) − e0(n − 1)]Q (2.123)

= x(n) + d(n) − e0(n − 1) + e(n), (2.124)

e0(n) = y(n) − (x(n) − e0(n − 1)) (2.125)

= d(n) + e(n), (2.126)

y(n) = x(n) + d(n) − d(n − 1) + e(n) − e(n − 1), (2.127)

e1(n) = d(n) − d(n − 1) + e(n) − e(n − 1), (2.128)

with the Z-transforms given by

Y (z) = X(z) + E(z)(1 − z−1) + D(z)(1 − z−1), (2.129)

E1(z) = E(z)(1 − z−1) + D(z)(1 − z−1). (2.130)

Apart from the discussed feedback structures which are easy to implement on a digital
signal processor and which lead to high-pass noise shaping, psychoacoustic-based noise
shaping methods have been proposed in the literature [Ger89, Wan92, Hel07]. These
methods use special approximations of the hearing threshold (threshold in quiet, absolute
threshold) for the feedback structure 1 − H(z). Figure 2.32a shows several hearing
threshold models as a function of frequency [ISO389, Ter79, Wan92]. It can be seen
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that the sensitivity of human hearing is high for frequencies between 2 and 6 kHz and
sharply decreases for high and low frequencies. Figure 2.32b also shows the inverse ISO
389-7 threshold curve which represents an approximation of the filtering operation in our
perception. The feedback filter of the noise shaper should affect the quantization error
with the inverse ISO 389 weighting curve. Hence, the noise power in the frequency range
with high sensitivity should be reduced and shifted toward lower and higher frequencies.
Figure 2.33a shows the unweighted power density spectra of the quantization error for three
special filters H(z) [Wan92, Hel07]. Figure 2.33b depicts the same three power density
spectra, weighted by the inverse ISO 389 threshold of Fig. 2.32b. These weighted power
density spectra show that the perceived noise power is reduced by all three noise shapers
versus the frequency axis. Figure 2.34 shows a sinusoid with amplitude Q = 2−15, which
is quantized to w = 16 bits with psychoacoustic noise shaping. The quantized signal xQ(n)

consists of different amplitudes reflecting the low-level signal. The power density spectrum
of the quantized signal reflects the psychoacoustic weighting of the noise shaper with a
fixed filter. A time-variant psychoacoustic noise shaping is described in [DeK03, Hel07],
where the instantaneous masking threshold is used for adaptation of a time-variant filter.
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Figure 2.31 Modified dither and spectrum shaping.

2.4 Number Representation

The different applications in digital signal processing and transmission of audio signals
leads to the question of the type of number representation for digital audio signals. In
this section, basic properties of fixed-point and floating-point number representation in the
context of digital audio signal processing are presented.

2.4.1 Fixed-point Number Representation

In general, an arbitrary real number x can be approximated by a finite summation

xQ =
w−1∑
i=0

bi2i , (2.131)

where the possible values for bi are 0 and 1.
The fixed-point number representation with a finite number w of binary places leads to

four different interpretations of the number range (see Table 2.1 and Fig. 2.35).
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Figure 2.32 (a) Hearing thresholds in quiet. (b) Inverse ISO 389-7 threshold curve.

Table 2.1 Bit location and range of values.

Type Bit location Range of values

Signed 2’s c. xQ = −b0 +∑w−1
i=1 b−i2

−i −1 ≤ xQ ≤ 1 − 2−(w−1)

Unsigned 2’s c. xQ =∑w
i=1 b−i2

−i 0 ≤ xQ ≤ 1 − 2−w

Signed int. xQ = −bw−12w−1 +∑w−2
i=0 bi2

i −2w−1 ≤ xQ ≤ 2w−1 − 1

Unsigned int. xQ =∑w−1
i=0 bi2

i 0 ≤ xQ ≤ 2w − 1

The signed fractional representation (2’s complement) is the usual format for digital
audio signals and for algorithms in fixed-point arithmetic. For address and modulo
operation, the unsigned integer is used. Owing to finite word-length w, overflow occurs
as shown in Fig. 2.36. These curves have to be taken into consideration while carrying out
operations, especially additions in 2’s complement arithmetic.

Quantization is carried out with techniques as shown in Table 2.2 for rounding and
truncation. The quantization step size is characterized by Q = 2−(w−1) and the symbol �x�
denotes the biggest integer smaller than or equal to x. Figure 2.37 shows the rounding and



2.4 Number Representation 49

0 2 4 6 8 10 12 14 16 18 20
40

20

0

20

40

f / kHz 

S
E

E
(f

) 
/ d

B
 

a) Unweighted PSDs

He8
Wa3
Wa9

0 2 4 6 8 10 12 14 16
40

30

20

10

0

f / kHz 

S
E

E
(f

) 
/ d

B
 

b) Weighted PSDs

He8
Wa3
Wa9

Figure 2.33 Power density spectrum of three filter approximations (Wa3 third-order filter, Wa9 ninth-
order filter, He8 eighth-order filter [Wan92, Hel07]): (a) unweighted PSDs, (b) inverse ISO 389-7
weighted PSDs.

truncation curves for 2’s complement number representation. The absolute error shown in
Fig. 2.37 is given by e = xQ − x.

Table 2.2 Rounding and truncation of 2s complement numbers.

Type Quantization Error limits

2’s c. (r) xQ = Q�Q−1x + 0.5� −Q/2 ≤ xQ − x ≤ Q/2

2’s c. (t) xQ = Q�Q−1x� −Q ≤ xQ − x ≤ 0

Digital audio signals are coded in the 2’s complement number representation. For 2’s
complement representation, the range of values from −Xmax to +Xmax is normalized to
the range −1 to +1 and is represented by the weighted finite sum xQ = −b0 + b1 · 0.5 +
b2 · 0.25 + b3 · 0.125 + · · · + bw−1 · 2−(w−1). The variables b0 to bw−1 are called bits and
can take the values 1 or 0. The bit b0 is called the MSB (most significant bit) and bw−1
is called the LSB (least significant bit). For positive numbers, b0 is equal to 0 and for
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Figure 2.35 Fixed-point formats.

negative numbers b0 equals 1. For a 3-bit quantization (see Fig. 2.38), a quantized value can
be represented by xQ = −b0 + b1 · 0.5 + b2 · 0.25. The smallest quantization step size is
0.25. For a positive number 0.75 it follows that 0.75 = −0 + 1 · 0.5 + 1 · 0.25. The binary
coding for 0.75 is 011.
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Figure 2.38 Rounding curve and error signal for w = 3 bits.

Dynamic Range. The dynamic range of a number representation is defined as the ratio of
maximum to minimum number. For fixed-point representation with

xQ max = (1 − 2−(w−1)), (2.132)

xQ min = 2−(w−1), (2.133)

the dynamic range is given by

DRF = 20 log10

(
xQ max

xQ min

)
= 20 log10

(
1 − Q

Q

)
= 20 log10(2

w−1 − 1) dB. (2.134)

Multiplication and Addition of Fixed-point Numbers. For the multiplication of two
fixed-point numbers in the range from −1 to +1, the result is always less than 1. For
the addition of two fixed-point numbers, care must be taken for the result to remain in
the range from −1 to +1. An addition of 0.6 + 0.7 = 1.3 must be carried out in the
form 0.5(0.6 + 0.7) = 0.65. This multiplication with the factor 0.5 or generally 2−s is
called scaling. An integer in the range from 1 to, for instance, 8 is chosen for the scaling
coefficient s.

Error Model. The quantization process for fixed-point numbers can be approximated as
an the addition of an error signal e(n) to the signal x(n) (see Fig. 2.39). The error signal is
a random signal with white power density spectrum.
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Qx(n)

x (n)=x(n)+e(n)Qx(n)

e(n)

x (n)Q

Figure 2.39 Model of a fixed-point quantizer.

Signal-to-noise Ratio. The signal-to-noise ratio for a fixed-point quantizer is defined by

SNR = 10 log10

(
σ 2

X

σ 2
E

)
, (2.135)

where σ 2
X is the signal power and σ 2

E is the noise power.

2.4.2 Floating-point Number Representation

The representation of a floating-point number is given by

xQ = MG 2EG (2.136)

with
0.5 ≤ MG < 1, (2.137)

where MG denotes the normalized mantissa and EG the exponent. The normalized standard
format (IEEE) is shown in Fig. 2.40 and special cases are given in Table 2.3. The
mantissa M is implemented with a word-length of wM bits and is in fixed-point number
representation. The exponent E is implemented with a word-length of wE bits and is an
integer in the range from −2wE−1 + 2 to 2wE−1 − 1. For an exponent word-length of
wE = 8 bits, its range of values lies between −126 and +127. The range of values of
the mantissa lies between 0.5 and 1. This is referred to as the normalized mantissa and is
responsible for the unique representation of a number. For a fixed-point number in the range
between 0.5 and 1, it follows that the exponent of the floating-point number representation
is E = 0. To represent a fixed-point number in the range between 0.25 and 0.5 in floating-
point form, the range of values of the normalized mantissa M lies between 0.5 and 1, and
for the exponent it follows that E = −1. As an example, for a fixed-point number 0.75 the
floating-point number 0.75 · 20 results. The fixed-point number 0.375 is not represented
as the floating-point number 0.375 · 20. With the normalized mantissa, the floating-point
number is expressed as 0.75 · 2−1. Owing to normalization, the ambiguity of floating-point
number representation is avoided. Numbers greater than 1 can be represented. For example,
1.5 becomes 0.75 · 21 in floating-point number representation.

Figure 2.41 shows the rounding and truncations curves for floating-point representation
and the absolute error e = xQ − x. The curves for floating-point quantization show
that for small amplitudes small quantization step sizes occur. In contrast to fixed-point
representation, the absolute error is dependent on the input signal.
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Figure 2.40 Floating-point number representation.

Table 2.3 Special cases of floating-point number representation.

Type Exponent Mantissa Value

NAN 255 �= 0 Undefined

Infinity 255 0 (−1)s infinity

Normal 1 ≤ e ≤ 254 Any (−1)s (0.m)2e−127

Zero 0 0 (−1)s · 0
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Figure 2.41 Rounding and truncation curves for floating-point representation.
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In the interval
2EG ≤ x < 2EG+1, (2.138)

the quantization step is given by

QG = 2−(wM−1)2EG. (2.139)

For the relative error

er = xQ − x

x
(2.140)

of the floating-point representation, a constant upper limit can be stated as

|er | ≤ 2−(wM−1). (2.141)

Dynamic Range. With the maximum and minimum numbers given by

xQ max = (1 − 2−(wM−1))2EG max, (2.142)

xQ min = 0.5 2EG min, (2.143)

and

EG max = 2wE−1 − 1, (2.144)

EG min = − 2wE−1 + 2, (2.145)

the dynamic range for floating-point representation is given by

DRG = 20 log10

(
(1 − 2−(wM−1))2EG max

0.5 2EG min

)
= 20 log10(1 − 2−(wM−1))2EG max−EG min+1

= 20 log10(1 − 2−(wM−1))22wE −2 dB. (2.146)

Multiplication and Addition of Floating-point Numbers. For multiplications with
floating-point numbers, the exponents of both numbers xQ1 = M12E1 and xQ2 = M22E2

are added and the mantissas are multiplied. The resulting exponent EG = E1 + E2 is
adjusted so that MG = M1M2 lies in the interval 0.5 ≤ MG < 1. For additions the smaller
number is denormalized to get the same exponent. Then both mantissa are added and the
result is normalized.

Error Model. With the definition of the relative error er (n) = [xQ(n) − x(n)]/x(n) the
quantized signal can be written as

xQ(n) = x(n) · (1 + er (n)) = x(n) + x(n) · er(n). (2.147)

Floating-point quantization can be modeled as an additive error signal e(n) = x(n) · er(n)

to the signal x(n) (see Fig. 2.42).

Signal-to-noise Ratio. Under the assumption that the relative error is independent of the
input x, the noise power of the floating-point quantizer can be written as

σ 2
E = σ 2

X · σ 2
Er

. (2.148)
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Qx(n)

x (n)= x(n) + x(n).eQ r(n)

e (n)r

xQ(n)

x(n)

Figure 2.42 Model of a floating-point quantizer.

For the signal-to-noise-ratio, we can derive

SNR = 10 log10

(
σ 2

X

σ 2
E

)
= 10 log10

(
σ 2

X

σ 2
X · σ 2

Er

)
= 10 log10

(
1

σ 2
Er

)
. (2.149)

Equation (2.149) shows that the signal-to-noise ratio is independent of the level of the
input. It is only dependent on the noise power σ 2

Er
which, in turn, is only dependent on the

word-length wM of the mantissa of the floating-point representation.

2.4.3 Effects on Format Conversion and Algorithms

First, a comparison of signal-to-noise ratios is made for the fixed-point and floating-
point number representation. Figure 2.43 shows the signal-to-noise ratio as a function of
input level for both number representations. The fixed-point word-length is w = 16 bits.
The word-length of the mantissa in floating-point representation is also wM = 16 bits,
whereas that of the exponent is wE = 4 bits. The signal-to-noise ratio for floating-point
representation shows that it is independent of input level and varies as a sawtooth curve
in a 6 dB grid. If the input level is so low that a normalization of the mantissa due to
finite number representation is not possible, then the signal-to-noise ratio is comparable to
fixed-point representation. While using the full range, both fixed-point and floating-point
result in the same signal-to-noise ratio. It can be observed that the signal-to-noise ratio
for fixed-point representation depends on the input level. This signal-to-noise ratio in the
digital domain is an exact image of the level-dependent signal-to-noise ratio of an analog
signal in the analog domain. A floating-point representation cannot improve this signal-to-
noise ratio. Rather, the floating-point curve is vertically shifted downwards to the value of
signal-to-noise ratio of an analog signal.

AD/DA Conversion. Before processing, storing and transmission of audio signals, the
analog audio signal is converted into a digital signal. The precision of this conversion
depends on the word-length w of the AD converter. The resulting signal-to-noise ratio
is 6w dB for uniform PDF inputs. The signal-to-noise ratio in the analog domain depends
on the level. This linear dependence of signal-to-noise ratio on level is preserved after AD
conversion with subsequent fixed-point representation.

Digital Audio Formats. The basis for established digital audio transmission formats is
provided in the previous section on AD/DA conversion. The digital two-channel AES/EBU
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interface [AES92] and 56-channel MADI interface [AES91] both operate with fixed-point
representation with a word-length of at most 24 bits per channel.

Storage and Transmission. Besides the established storage media like compact disc and
DAT which were exclusively developed for audio application, there are storage systems like
hard discs in computers. These are based on magnetic or magneto-optic principles. The
systems operate with fixed-point number representation. With regard to the transmission
of digital audio signals for band-limited transmission channels like satellite broadcasting
(Digital Satellite Radio, DSR) or terrestrial broadcasting, it is necessary to reduce bit rates.
For this, a conversion of a block of linearly coded samples is carried out in a so-called
block floating-point representation in DSR. In the context of DAB, a data reduction of
linear coded samples is carried out based on psychoacoustic criteria.

Equalizers. While implementing equalizers with recursive digital filters, the signal-to-
noise ratio depends on the choice of the recursive filter structure. By a suitable choice
of a filter structure and methods to spectrally shape the quantization errors, optimal signal-
to-noise ratios are obtained for a given word-length. The signal-to-noise ratio for fixed-
point representation depends on the word-length and for floating-point representation on the
word-length of the mantissa. For filter implementations with fixed-point arithmetic, boost
filters have to be implemented with a scaling within the filter algorithm. The properties of
floating-point representation take care of automatic scaling in boost filters. If an insert I/O
in fixed-point representation follows a boost filter in floating-point representation then the
same scaling as in fixed-point arithmetic has to be done.

Dynamic Range Control. Dynamic range control is performed by a simple multiplicative
weighting of the input signal with a control factor. The latter follows from calculating the
peak and RMS value (root mean square) of the input signal. The number representation
of the signal has no influence on the properties of the algorithm. Owing to the normalized
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mantissa in floating-point representation, some simplifications are produced while deter-
mining the control factor.

Mixing/Summation. While mixing signals into a stereo image, only multiplications and
additions occur. Under the assumption of incoherent signals, an overload reserve can
be estimated. This implies a reserve of 20/30 dB for 48/96 sources. For fixed-point
representation the overload reserve is provided by a number of overflow bits in the
accumulator of a DSP (Digital Signal Processor). The properties of automatic scaling in
floating-point arithmetic provide for overload reserves. For both number representations,
the summation signal must be matched with the number representation of the output. While
dealing with AES/EBU outputs or MADI outputs, both number representations are adjusted
to fixed-point format. Similarly, within heterogeneous system solutions, it is logical to
make heterogeneous use of both number representations, though corresponding number
representations have to be converted.

Since the signal-to-noise ratio in fixed-point representation depends on the input level,
a conversion from fixed-point to floating-point representation does not lead to a change of
signal-to-noise ratio, i.e. the conversion does not improve the signal-to-noise ratio. Further
signal processing with floating-point or fixed-point arithmetic does not alter the signal-to-
noise ratio as long as the algorithms are chosen and programmed accordingly. Reconversion
from floating-point to fixed-point representation again leads to a level-dependent signal-to-
noise ratio.

As a consequence, for two-channel DSP systems which operate with AES/EBU or with
analog inputs and outputs, and which are used for equalization, dynamic range control,
room simulation etc., the above-mentioned discussion holds. These conclusions are also
valid for digital mixing consoles for which digital inputs from AD converters or from
multitrack machines are represented in fixed-point format (AES/EBU or MADI). The
number representation for inserts and auxiliaries is specific to a system. Digital AES/EBU
(or MADI) inputs and outputs are realized in fixed-point number representation.

2.5 Java Applet – Quantization, Dither, and Noise
Shaping

This applet shown in Fig. 2.44 demonstrates audio effects resulting from quantization. It is
designed for a first insight into the perceptual effects of quantizing an audio signal.

The following functions can be selected on the lower right of the graphical user
interface:

• Quantizer

– word-length w leads to quantization step size Q = 2w−1.

• Dither

– rect dither – uniform probability density function

– tri dither – triangular probability density function
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– high-pass dither – triangular probability density function and high-pass power
spectral density.

• Noise shaping

– first-order H(z) = z−1

– second-order H(z) = −2z−1 + z−2

– psychoacoustic noise shaping.

You can choose between two predefined audio files from our web server (audio1.wav or
audio2.wav) or your own local wav file to be processed [Gui05].

Figure 2.44 Java applet – quantization, dither, and noise shaping.

2.6 Exercises

1. Quantization

1. Consider a 100 Hz sine wave x(n) sampled with fS = 44.1 kHz, N = 1024 samples
and w = 3 bits (word-length). What is the number of quantization levels? What
is the quantization step Q when the signal is normalized to −1 ≤ x(n) < 1. Show
graphically how quantization is performed. What is the maximum error for this 3-bit
quantizer? Write Matlab code for quantization with rounding and truncation.



60 Quantization

2. Derive the mean value, the variance and the peak factor PF of sequence e(n), if
the signal has a uniform probability density function in the range −Q/2 < e(n) <

−Q/2. Derive the signal-to-noise ratio for this case. What will happen if we increase
our word-length by one bit?

3. As the input signal level decreases from maximum amplitude to very low amplitudes,
the error signal becomes more audible. Describe the error calculated above when w

decreases to 1 bit? Is the classical quantization model still valid? What can be done
to avoid this distortion?

4. Write Matlab code for a quantizer with w = 16 bits with rounding and truncation.

• Plot the nonlinear transfer characteristic and the error signal when the input
signal covers the range 3Q < x(n) < 3Q.

• Consider the sine wave x(n) = A sin(2π(f/fS)n), n = 0, . . . , N − 1, with
A = Q, f/fS = 64/N and N = 1024. Plot the output signal (n = 0, . . . , 99)
of a quantizer with rounding and truncation in the time domain and the
frequency domain.

• Compute for both quantization types the quantization error and the signal-to-
noise ratio.

2. Dither

1. What is dither and when do we have to use it?

2. How do we perform dither and what kinds of dither are there?

3. How do we obtain a triangular high-pass dither and why do we prefer it to other
dithers?

4. Matlab: Generate corresponding dither signals for rectangular, triangular and trian-
gular high-pass.

5. Plot the amplitude distribution and the spectrum of the output xQ(n) of a quantizer
for every dither type.

3. Noise Shaping

1. What is noise shaping and when do we do it?

2. Why is it necessary to dither during noise shaping and how do we do this?

3. Matlab: The first noise shaper used is without dither and assumes that the transfer
function in the feedback structure can be first-order H(z) = z−1 or second-order
H(z) = −2z−1 + z−2. Plot the output xQ(n) and the error signal e(n) and its
spectrum. Show with a plot the shape of the error signal.

4. The same noise shaper is now used with a dither signal. Is it really necessary to dither
with noise shaping? Where would you add your dither in the flow graph to achieve
better results?
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5. In the feedback structure we now use a psychoacoustic-based noise shaper which
uses the Wannamaker filter coefficients

h3 = [1.623, −0.982, 0.109],
h5 = [2.033, −2.165, 1.959, −1.590, 0.6149],
h9 = [2.412, −3.370, 3.937, −4.174, 3.353, −2.205, 1.281, −0.569, 0.0847].

Show with a Matlab plot the shape of the error with this filter.
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Chapter 3

AD/DA Conversion

The conversion of a continuous-time function x(t) (voltage, current) into a sequence of
numbers x(n) is called analog-to-digital conversion (AD conversion). The reverse process
is known as digital-to-analog conversion (DA conversion). The time-sampling of a function
x(t) is described by Shannon’s sampling theorem. This states that a continuous-time signal
with bandwidth fB can be sampled with a sampling rate fS > 2fB without changing
the information content in the signal. The original analog signal is reconstructed by
low-pass filtering with bandwidth fB . Besides time-sampling, the nonlinear procedure of
digitizing the continuous-valued amplitude (quantization) of the sampled signal occurs. In
Section 3.1 basic concepts of Nyquist sampling, oversampling and delta-sigma modulation
are presented. In Sections 3.2 and 3.3 principles of AD and DA converter circuits are
discussed.

3.1 Methods

3.1.1 Nyquist Sampling

The sampling of a signal with sampling rate fS > 2fB is called Nyquist sampling. The
schematic diagram in Fig. 3.1 shows the procedure. The band-limiting of the input at fS/2
is carried out by an analog low-pass filter (Fig. 3.1a). The following sample-and-hold circuit
samples the band-limited input at a sampling rate fS . The constant amplitude of the time
function over the sampling period TS = 1/fS is converted to a number sequence x(n) by
a quantizer (Fig. 3.1b). This number sequence is fed to a digital signal processor (DSP)
which performs signal processing algorithms. The output sequence y(n) is delivered to a
DA converter which gives a staircase as its output (Fig. 3.1c). Following this, a low-pass
filter gives the analog output y(t) (Fig. 3.1d). Figure 3.2 demonstrates each step of AD/DA
conversion in the frequency domain. The individual spectra in Fig. 3.2a–d correspond to
the outputs in Fig. 3.1a–d.

After band-limiting (Fig. 3.2a) and sampling, a periodic spectrum with period fS

of the sampled signal is obtained as shown in Fig. 3.2b. Assuming that consecutive
quantization errors e(n) are statistically independent of each other, the noise power has

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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Figure 3.1 Schematic diagram of Nyquist sampling.
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Figure 3.2 Nyquist sampling – interpretation in the frequency domain.



3.1 Methods 65

a spectral uniform distribution in the frequency domain 0 ≤ f ≤ fS . The output of the DA
converter still has a periodic spectrum. However, this is weighted with the sinc function
(sinc = sin(x)/x), of the sample-and-hold circuit (Fig. 3.2c). The zeros of the sinc function
are at multiples of the sampling rate fS . In order to reconstruct the output (Fig. 3.2d), the
image spectra are eliminated by an analog low-pass of sufficient stop-band attenuation (see
Fig. 3.2c).

The problems of Nyquist sampling lie in the steep band-limiting filter characteristics
(anti-aliasing filter) of the analog input filter and the analog reconstruction filter (anti-
imaging filter) of similar filter characteristics and sufficient stop-band attenuation. Further,
sinc distortion due to the sample-and-hold circuit needs to be compensated for.

3.1.2 Oversampling

In order to increase the resolution of the conversion process and reduce the complexity
of analog filters, oversampling techniques are employed. Owing to the spectral uniform
distribution of quantization error between 0 and fS (see Fig. 3.3a), it is possible to reduce
the power spectral density in the pass-band 0 ≤ f ≤ fB through oversampling by a factor
L, i.e. with the new sampling rate LfS (see Fig. 3.3b). For identical quantization step size
Q, the shaded areas (quantization error power σ 2

E) in Fig. 3.3a and Fig. 3.3b are equal. The
increase in the signal-to-noise ratio can also be observed in Fig. 3.3.

S (f)EE

a) Nyquist Sampling

c) Delta-sigma Samplingb) Oversampling

f1 fS-f1

fB fS LfS

f

S (f)EE

f

LfS-f1f1

S (f)EE

f

LfS-f1f1

fB fS LfS

fB fS LfS

12LfS

Q2

12fS

Q2

Figure 3.3 Influence of oversampling and delta-sigma technique on power spectral density of
quantization error and on input sinusoid with frequency f1.

It follows that in the pass-band at a sampling rate of fS = 2fB the power spectral
density given by

SEE(f ) = Q2

12fS

(3.1)



66 AD/DA Conversion

leads to the noise power

N2
B = σ 2

E = 2
∫ fB

0
SEE(f ) df = Q2

12
. (3.2)

Owing to oversampling by a factor of L, a reduction of the power spectral density given by

SEE(f ) = Q2

12LfS

(3.3)

is obtained (see Fig. 3.3b). With fS = 2fB , the error power in the audio band is given by

N2
B = 2fB

Q2

12LfS

= Q2

12

1

L
. (3.4)

The signal-to-noise ratio (with PF = √
3) owing to oversampling can now be expressed as

SNR = 6.02 · w + 10 log10(L) dB. (3.5)

Figure 3.4a shows a schematic diagram of anoversampling AD converter. Owing
to oversampling, the analog band-limiting low-pass filter can have a wider transition
bandwidth as shown in Fig. 3.4b. The quantization error power is distributed between 0 and
the sampling rate LfS . To reduce the sampling rate, it is necessary to limit the bandwidth
with a digital low-pass filter (see Fig. 3.4c). After this, the samplingrate is reduced by a
factor L (see Fig. 3.4d) by taking every Lth output sample of the digital low-pass filter
[Cro83, Vai93, Fli00].

Figure 3.5a shows a schematic diagram of an oversampling DA converter. The sampling
rate is first increased by a factor of L. For this purpose, L − 1 zeros are introduced between
two consecutive input values [Cro83, Vai93, Fli00]. The following digital filter eliminates
all image spectra (Fig. 3.5b) except the base-band spectrum and spectra at multiples of
LfS (Fig. 3.5c). It interpolates L − 1 samples between two input samples. The w-bit DA
converter operates at a sampling rate LfS . Its output is fed to an analog reconstruction filter
which eliminates the image spectra at multiples of LfS .

3.1.3 Delta-sigma Modulation

Delta-sigma modulation using oversampling is a conversion strategy derived from delta
modulation. In delta modulation (Fig. 3.6a), the difference between the input x(t) and
signal x1(t) is converted into a 1-bit signal y(n) at a very high sampling rate LfS . The
sampling rate is higher than the necessary Nyquist rate fS . The quantized signal y(n) gives
the signal x1(t) via an analog integrator. The demodulator consists of an integrator and a
reconstruction low-pass filter.

The extension to delta-sigma modulation [Ino63] involves shifting the integrator from
the demodulator to the input of the modulator (see Fig. 3.6b). With this, it is possible
to combine the two integrators as a single integrator after addition (see Fig. 3.7a). The
corresponding signals are shown in Fig. 3.8.
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Figure 3.4 Oversampling AD converter and sampling rate reduction.

A time-discrete model of the delta-sigma modulator is given in Fig. 3.7b. The Z-
transform of the output signal y(n) is given by

Y (z) = H(z)

1 + H(z)
X(z) + 1

1 + H(z)
E(z) ≈ X(z) + 1

1 + H(z)
E(z). (3.6)

For a large gain factor of the system H(z), the input signal will not be affected. In contrast,
the quantization error is shaped by the filter term 1/[(1 + H(z)].

Schematic diagrams of delta-sigma AD/DA conversion are shown in Figs 3.9 and 3.10.
For delta-sigma AD converters, a digital low-pass filter and a downsampler with factor L

are used to reduce the sampling rate LfS to fS . The 1-bit input to the digital low-pass filter
leads to a w-bit output x(n) at a sampling rate fS . The delta-sigma DA converter consists
of an upsampler with factor L, a digital low-pass filter to eliminate the mirror spectra and
a delta-sigma modulator followed by an analog reconstruction low-pass filter. In order to
illustrate noise shaping in delta-sigma modulation in detail, first- and second-order systems
as well as multistage techniques are investigated in the following sections.
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Figure 3.5 Oversampling and DA conversion.

First-order Delta-sigma Modulator

A time-discrete model of a first-order delta-sigma modulator is shown in Fig. 3.11.
The difference equation for the output y(n) is given by

y(n) = x(n − 1) + e(n) − e(n − 1). (3.7)

The corresponding Z-transform leads to

Y (z) = z−1X(z) + E(z) (1 − z−1)︸ ︷︷ ︸
HE(z)

. (3.8)

The power density spectrum of the error signal e1(n) = e(n) − e(n − 1) is

SE1E1(e
j�) = SEE(ej�)|1 − e−j�|2 = SEE(ej�)4 sin2

(
�

2

)
, (3.9)
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Figure 3.6 Delta modulation and displacement of integrator.
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Figure 3.7 Delta-sigma modulation and time-discrete model.

where SEE(ej�) denotes the power density spectrum of the quantization error e(n). The
error power in the frequency band [−fB, fB ], with SEE(f ) = Q2/12LfS , can be written
as

N2
B = SEE(f )2

∫ fB

0
4 sin2

(
π

f

LfS

)
df (3.10)


 Q2

12

π2

3

(
2fB

LfS

)3

. (3.11)
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Figure 3.8 Signals in delta-sigma modulation.
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Figure 3.9 Oversampling delta-sigma AD converter.

With fS = 2fB , we get

N2
B = Q2

12

π2

3

(
1

L

)3

. (3.12)
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Figure 3.10 Oversampling delta-sigma DA converter.
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Figure 3.11 Time-discrete model of a first-order delta-sigma modulator.

Second-order Delta-sigma Modulator

For the second-order delta-sigma modulator [Can85], shown in Fig. 3.12, the difference
equation is expressed as

y(n) = x(n − 1) + e(n) − 2e(n − 1) + e(n − 2) (3.13)
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Figure 3.12 Time-discrete model of a second-order delta-sigma modulator.

and the Z-transform is given by

Y (z) = z−1X(z) + E(z) (1 − 2z−1 + z−2)︸ ︷︷ ︸
HE(z)=(1−z−1)2

. (3.14)

The power density spectrum of the error signal e1(n) = e(n) − 2e(n − 1) + e(n − 2) can
be written as

SE1E1(e
j�) = SEE(ej�)|1 − e−j�|4

= SEE(ej�)

[
4 sin2

(
�

2

)]2

= SEE(ej�)4[1 − cos(�)]2. (3.15)
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The error power in the frequency band [−fB, fB ] is given by

N2
B = SEE(f )2

∫ fB

0
4[1 − cos(�)]2 df (3.16)


 Q2

12

π4

5

(
2fB

LfS

)5

, (3.17)

and with fS = 2fB we obtain

N2
B = Q2

12

π4

5

(
1

L

)5

. (3.18)

Multistage Delta-sigma Modulator

A multistage delta-sigma modulator (MASH, [Mat87]) is shown in Fig. 3.13.
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Figure 3.13 Time-discrete model of a multistage delta-sigma modulator.

The Z-transforms of the output signals yi(n), i = 1, 2, 3, are given by

Y1(z) = X(z) + (1 − z−1)E1(z), (3.19)

Y2(z) = − E1(z) + (1 − z−1)E2(z), (3.20)

Y3(z) = − E2(z) + (1 − z−1)E3(z). (3.21)
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The Z-transform of the output obtained by addition and filtering leads to

Y (z) = Y1(z) + (1 − z−1)Y2(z) + (1 − z−1)2Y3(z)

= X(z) + (1 − z−1)E1(z) − (1 − z−1)E1(z)

+ (1 − z−1)2E2(z) − (1 − z−1)2E2(z) + (1 − z−1)3E3(z)

= X(z) + (1 − z−1)3︸ ︷︷ ︸
HE(z)

E3(z). (3.22)

The error power in the frequency band [−fB, fB ],

N2
B = Q2

12

π6

7

(
2fB

LfS

)7

, (3.23)

with fS = 2fB , gives the total noise power

N2
B = Q2

12

π6

7

(
1

L

)7

. (3.24)

The error transfer functions in Fig. 3.14 show the noise shaping for three types of delta-
sigma modulations as discussed before. The error power is shifted toward higher frequen-
cies.
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Figure 3.14 HE(z) = (1 − z−1)K with K = 1, 2, 3.

The improvement of signal-to-noise ratio by pure oversampling and delta-sigma mod-
ulation (first, second and third order) is shown in Fig. 3.15. For the general case of a kth-
order delta-sigma conversion with oversampling factor L one can derive the signal-to-noise
ratio as

SNR = 6.02 · w − 10 log10

(
π2k

2k + 1

)
+ (2k + 1)10 log10(L) dB. (3.25)
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Here w denotes the quantizer word-length of the delta-sigma modulator. The signal quanti-
zation after digital low-pass filtering and downsampling by L can be performed with (3.25)
according to the relation w = SNR/6.
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Figure 3.15 Improvement of signal-to-noise ratio as a function of oversampling and noise shaping
(L = 2x ).

Higher-order Delta-sigma Modulator

A widening of the stop-band for the high-pass transfer function of the quantization error
is achieved with higher-order delta-sigma modulation [Cha90]. Besides the zeros at z = 1,
additional zeros are placed on the unit circle. Also, poles are integrated into the trans-
fer function. A time-discrete model of a higher-order delta-sigma modulator is shown in
Fig. 3.16.
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Figure 3.16 Higher-order delta-sigma modulator.
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The transfer function in Fig. 3.16 can be written as

H(z) =
A0 + A1

z−1

1−z−1 + A2

(
z−1

1−z−1

)2 + · · ·

1 − B1
z−1

1−z−1 − B2

(
z−1

1−z−1

)2 + · · ·

= A0(z − 1)N + A1(z − 1)N−1 + · · · + AN

(z − 1)N − B1(z − 1)N−1 − · · · − BN

=
∑N

i=0 Ai(z − 1)N−i

(z − 1)N −∑N
i=1 Bi(z − 1)N−i

. (3.26)

The Z-transform of the output is given by

Y (z) = H(z)

1 + H(z)
X(z) + 1

1 + H(z)
E(z) (3.27)

= HX(z)X(z) + HE(Z)E(z). (3.28)

The transfer function for the input is

HX(z) =
∑N

i=0 Ai(z − 1)N−i

(z − 1)N −∑N
i=1 Bi(z − 1)N−i +∑N

i=0 Ai(z − 1)N−i
, (3.29)

and the transfer function for the error signal is given by

HE(z) = (z − 1)N −∑N
i=1 Bi(z − 1)N−i

(z − 1)N −∑N
i=1 Bi(z − 1)N−i +∑N

i=0 Ai(z − 1)N−i
. (3.30)

For Butterworth or Chebyshev filter designs, the frequency responses as shown in Fig. 3.17
are obtained for the error transfer functions. As a comparison, the frequency responses
of first-, second- and third-order delta-sigma modulation are shown. The widening of the
stop-band for Butterworth and Chebyshev filters can be observed from Fig. 3.18.

Decimation Filter

Decimation filters for AD conversion and interpolation filters for DA conversion are im-
plemented with multirate systems [Fli00]. The necessary downsampler and upsampler are
simple systems. For the former, every nth sample is taken out of the input sequence. For the
latter, n − 1 zeros are inserted between two input samples. For decimation, band-limiting
is performed by H(z) followed by sampling rate reduction by a factor L. This procedure
can be implemented in stages (see Fig. 3.19). The use of easy-to-implement filter structures
at high sampling rates, like comb filters with transfer function

H1(z) = 1

L

1 − z−L

1 − z−1
(3.31)

(shown in Fig. 3.20), allows simple implementation needing only delay systems and ad-
ditions. In order to increase the stop-band attenuation, a series of comb filters is used so
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Figure 3.17 Comparison of different transfer functions of error signal.
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Figure 3.18 Transfer function of the error signal in stop-band.

that

HM
1 (z) =

[
1

L

1 − z−L

1 − z−1

]M

(3.32)

is obtained.
Besides additions at high sampling rates, complexity can be reduced further. Owing

to sampling rate reduction by a factor of L, the numerator (1 − z−L) can be moved so
that it is placed after the downsampler (see Fig. 3.21). For a series of comb filters, the
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Figure 3.20 Signal flow diagram of a comb filter.

structure in Fig. 3.22 results. M simple recursive accumulators have to be performed at
the high sampling rate LfS . After this, downsampling by a factor L is carried out. The M

nonrecursive systems are calculated with the output sampling rate fS .
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Figure 3.21 Comb filter for sampling rate reduction.
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Figure 3.22 Series of comb filters for sampling rate reduction.

Figure 3.23a shows the frequency responses of a series of comb filters (L = 16). Fig-
ure 3.23b shows the resulting frequency response for the quantization error of a third-order
delta-sigma modulator connected in series with a comb filter H 4

1 (z). The system delay
owing to filtering and sampling rate reduction is given by

tD = N − 1

2
· 1

LfS

. (3.33)
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Figure 3.23 (a) Transfer function HM
1 (z) =

[
1

16
1−z−16

1−z−1

]M
with M = 1 . . . 4. (b) Third-order delta-

sigma modulation and in series with H 4
1 (z).

Example: Delay time of conversion process (latency time)

1. Nyquist conversion

fS = 48 kHz

tD = 1

fS

= 20.83 µs.

2. Delta-sigma modulation with single-stage downsampling

L = 64

fS = 48 kHz

N = 4096

tD = 665 µs.

3. Delta-sigma modulation with two-stage downsampling

L = 64

fS = 48 kHz

L1 = 16

L2 = 4

N1 = 61

N2 = 255

tD1 = 9.76 µs

tD2 = 662 µs.
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3.2 AD Converters

The choice of an AD converter for a certain application is influenced by a number of
factors. It mainly depends on the necessary resolution for a given conversion time. Both
of these depend upon each other and are decisively influenced by the architecture of the
AD converter. For this reason, the specifications of an AD converter are first discussed.
This is followed by circuit principles which influence the mutual dependence of resolution
and conversion time.

3.2.1 Specifications

In the following, the most important specifications for AD conversion are presented.

Resolution. The resolution for a given word-length w of an AD converter determines the
smallest amplitude

xmin = Q = xmax 2−(w−1), (3.34)

which is equal to the quantization step Q.

Conversion Time. The minimum sampling period TS = 1/fS between two samples is
called the conversion time.

Sample-and-hold Circuit. Before quantization, the time-continuous function is sampled
with the help of a sample-and-hold circuit, as shown in Fig. 3.24a.

The sampling period TS is divided into the sampling time tS in which the output voltage
U2 follows the input voltage U1, and the hold time tH . During the hold time the output
voltage U2 is constant and is converted into a binary word by quantization.

� =� �
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Figure 3.24 (a) Sample-and-hold circuit. (b) Input and output with clock signal. (tS = sampling time,
tH = hold time, tAD = aperture delay.)

Aperture Delay. The time tAD elapsed between start of hold and actual hold mode (see
Fig. 3.24b) is called the aperture delay.
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Aperture Jitter. The variation in aperture delay from sample to sample is called the aper-
ture jitter tADJ. The influence of aperture jitter limits the useful bandwidth of the sampled
signal. This is because at high frequency a deterioration of the signal-to-noise ratio occurs.
Assuming a Gaussian PDF aperture jitter, the signal-to-noise ratio owing to aperture jitter
as a function of frequency f can be written as

SNRJ = −20 log10(2πf tADJ) dB. (3.35)

Offset Error and Gain Error. The offset and gain errors of an AD converter are shown in
Fig. 3.25. The offset error results in a horizontal displacement of the real curve compared
with the dashed ideal curve of an AD converter. The gain error is expressed as the deviation
from the ideal gradient of the curve.
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Figure 3.25 Offset error and gain error.

Differential Nonlinearity. The differential nonlinearity

DNL = �x/Q

�xQ

− 1 LSB (3.36)

describes the error of the step size of a certain code word in LSB units. For ideal quan-
tization, the increase �x in the input voltage up to the next output code xQ is equal to
the quantization step Q (see Fig. 3.26). The difference of two consecutive output codes is
denoted by �xQ. When the output code changes from 010 to 011, the step size is 1.5 LSB
and therefore the differential nonlinearity DNL = 0.5 LSB. The step size between the
codes 011 and 101 is 0 LSB and the code 200 is missing. The differential nonlinearity
is DNL = −1 LSB.

Integral Nonlinearity. The integral nonlinearity (INL) describes the error between the
quantized and the ideal continuous value. This error is given in LSB units. It arises owing
to the accumulated error of the step size. This (see Fig. 3.27) changes itself continuously
from one output code to another.

Monotonicity. The progressive increase in quantizer output code for a continuously in-
creasing input voltage and progressive decrease in quantizer output code for a continuously
decreasing input voltage is called monotonicity. An example of non-monotonic behavior is
shown in Fig. 3.28 where one output code does not occur.
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Figure 3.26 Differential nonlinearity.
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Figure 3.27 Integral nonlinearity.
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Figure 3.28 Monotonicity.

Total Harmonic Distortion. The harmonic distortion is calculated for an AD converter at
full range with a sinusoid (X1 = 0 dB) of given frequency. The selective measurement of



82 AD/DA Conversion

harmonics of the second to the ninth order are used to compute

THD = 20 log

√√√√ ∞∑
n=2

[10(−Xn/20)]2 dB (3.37)

=
√√√√ ∞∑

n=2

[10(−Xn/20)]2 · 100%, (3.38)

where Xn are the harmonics in dB.

THD+N: Total Harmonic Distortion plus Noise. For the calculation of harmonic dis-
tortion plus noise, the test signal is suppressed by a stop-band filter. The measurement of
harmonic distortion plus noise is performed by measuring the remaining broad-band noise
signal which consists of integral and differential nonlinearity, missing codes, aperture jitter,
analog noise and quantization error.

3.2.2 Parallel Converter

Parallel Converter. A direct method for AD conversion is called parallel conversion (flash
converter). In parallel converters, the output voltage of the sample-and-hold circuit is com-
pared with a reference voltage UR with the help of 2w − 1 comparators (see Fig. 3.29).
The sample-and-hold circuit is controlled with sampling rate fS so that, during the hold
time tH , a constant voltage at the output of the sample-and-hold circuit is available. The
outputs of the comparators are fed at sampling clock rate into a (2w − 1)-bit register and
converted by a coding logic to a w-bit data word. This is fed at sampling clock rate to an
output register. The sampling rates that can be achieved lie between 1 and 500 MHz for a
resolution of up to 10 bits. Owing to the large number of comparators, the technique is not
feasible for high precision.

�

�

�

�1�

�

$
�
-
�
�

�

$���	�	����

;�.��s;

)�

)�

)�

)�

�1=

�1� �����;

(

��

��
�
�
�
��
��
�

!�

!�

�	����
���	��
%�

Figure 3.29 Parallel converter.
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Half-flash Converter. In half-flash AD converters (Fig. 3.30), two m-bit parallel converters
are used in order to convert two different ranges. The first m-bit AD converter gives a
digital output word which is converted into an analog voltage using an m-bit DA converter.
This voltage is now subtracted from the output voltage of the sample-and-hold circuit.
The difference voltage is digitized with a second m-bit AD converter. The rough and fine
quantization leads to a w-bit data word with a subsequent logic.
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Figure 3.30 Half-flash AD converter.

Subranging Converter. A combination of direct conversion and sequential procedure is
carried out for subranging AD converters (see Fig. 3.31). In contrast to the half-flash
converter, only one parallel converter is required. The switches S1 and S2 take the values
of 0 and 1. First the output voltage of a sample-and-hold circuit and then the difference
voltage amplified by a factor 2m is fed to an m-bit AD converter. The difference voltage is
formed with the help of the output voltage of an m-bit DA converter and the output voltage
of the sample-and-hold circuit. The conversion rates lie between 100 kHz and 40 MHz
where a resolution of up to 16 bits is achieved.
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Figure 3.31 Subranging AD converter.

3.2.3 Successive Approximation

AD converters with successive approximation consist of the functional modules shown in
Fig. 3.32. The analog voltage is converted into a w-bit word within w cycles. The converter
consists of a comparator, a w-bit DA converter and logic for controlling the successive
approximation.
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Figure 3.32 AD converter with successive approximation.

The conversion process is explained with the help of Fig. 3.33. First, it is checked
whether a positive or negative voltage is present at the comparator. If it is positive, the out-
put +0.5UR is fed to a DA converter to check whether the output voltage of the comparator
is greater or less than +0.5UR. Then, the output of (+0.5 ± 0.25)UR is fed to the DA
comparator. The output of the comparator is then evaluated. This procedure is performed
w times and leads to a w-bit word.

!�

9�3�5�!�

� � 2 < 5

Figure 3.33 Successive approximation.

For a resolution of 12 bits, sampling rates of up to 1 MHz can be achieved. Higher
resolutions of more than 16 bits are possible at a lower sampling rates.

3.2.4 Counter Methods

In contrast to the conversion techniques of the previous sections for high conversion rates,
the following techniques are used for sampling rates smaller than 50 kHz.

Forward-backward Counter. A technique which operates like successive approximation
is the forward-backward counter shown in Fig. 3.34. A logic controls a clocked forward-
backward counter whose output data word provides an analog output voltage via a w-bit
DA converter. The difference signal between this voltage and the output voltage of the
sample-and-hold circuit determines the direction of counting. The counter stops when the
corresponding output voltage of the DA converter is equal to the output voltage of the
sample-and-hold circuit.

Single-slope Counter. The single-slope AD converter shown in Fig. 3.35 compares the
output voltage of the sample-and-hold circuit with a voltage of a sawtooth generator. The
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Figure 3.34 AD converter with forward-backward counter.

sawtooth generator is started every sampling period. As long as the input voltage is greater
than the sawtooth voltage, the clock impulses are counted. The counter value corresponds
to the digital value of the input voltage.
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Figure 3.35 Single-slope AD converter.

Dual-slope Converter. A dual-slope AD converter is shown in Fig. 3.36. In the first phase
in which a switch S1 is closed for a counter period t1, the output voltage of the sample-
and-hold circuit is fed to an integrator of time-constant τ . During the second phase, the
switch S2 is closed and the switch S1 is opened. The reference voltage is switched to the
integrator and the time to reach a threshold is determined by counting the clock impulses by
a counter. Figure 3.36 demonstrates this for three different voltages U2. The slope during
time t1 is proportional to the output voltage U2 of the sample-and-hold circuit, whereas the
slope is constant when the reference voltage UR is connected to the integrator. The ratio
U2/UR = t2/t1 leads to the digital output word.

3.2.5 Delta-sigma AD Converter

The delta-sigma AD converter in Fig. 3.37 requires no sample-and-hold circuit owing to its
high conversion rate. The analog band-limiting low-pass filter and the digital low-pass filter
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Figure 3.36 Dual-slope AD converter.

for downsampling to a sampling rate fS are usually on the same circuit. The linear phase
nonrecursive digital low-pass filter in Fig. 3.37 has a 1-bit input signal and leads to a w-bit
output signal owing to the N filter coefficients h0, h1, . . . , hN−1 which are implemented
with a word-length of w bits. The output signal of the filter results from the summation of
the filter coefficients (0 or 1) of the nonrecursive low-pass filter. The downsampling by a
factor L is performed by taking every Lth sample out of the filter and writing to the output
register. In order to reduce the number of operations the filtering and downsampling can be
performed only every Lth input sample.

Applications of delta-sigma AD converters are found at sampling rates of up to 100 kHz
with a resolution of up to 24 bits.

3.3 DA Converters

Circuit principles for DA converters are mainly based on direct conversion techniques of
the input code. Achievable sampling rates are accordingly high.

3.3.1 Specifications

The definitions of resolution, total harmonic distortion (THD) and total harmonic distortion
plus noise (THD+N) correspond to those for AD converters. Further specifications are
discussed in the following.
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Figure 3.37 Delta-sigma AD converter.

Settling Time. The time interval between transferring a binary word and achieving the
analog output value within a specific error range is called the settling time tSE. The set-
tling time determines the maximum conversion frequency fSmax = 1/tSE. Within this time,
glitches between consecutive amplitude values can occur (see Fig. 3.38). With the help of
a sample-and-hold circuit (deglitcher), the output voltage of the DA converter is sampled
after the settling time and held.
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Figure 3.38 Settling time and sample-and-hold function.

Offset and Gain Error. The offset and gain errors of a DA converter are shown in Fig. 3.39.

Differential Nonlinearity. The differential nonlinearity for DA converters describes the
step size error of a code word in LSB units. For ideal quantization, the increase �x of
the output voltage until the next code word corresponding to the output voltage is equal to
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Figure 3.39 Offset and gain error.
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Figure 3.40 Differential nonlinearity.

the quantization step size Q (see Fig. 3.40). The difference between two consecutive input
codes is termed �xQ. Differential nonlinearity is given by

DNL = �x/Q

�xQ

− 1 LSB. (3.39)

For the code steps from 001 to 010 as shown in Fig. 3.40, the step size is 1.5 LSB, and
therefore the differential nonlinearity DNL = 0.5 LSB. The step size between the codes 010
and 100 is 0.75 LSB and DNL = −0.25. The step size for the code change from 011 to 100
is 0 LSB (DNL = −1 LSB).

Integral Nonlinearity. The integral nonlinearity describes the maximum deviation of the
output voltage of a real DA converter from the ideal straight line (see Fig. 3.41).

Monotonicity. The continuous increase in the output voltage with increasing input code
and the continuous decrease in the output voltage with decreasing input code is called
monotonicity. A non-monotonic behavior is presented in Fig. 3.42.
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Figure 3.41 Integral nonlinearity.
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Figure 3.42 Monotonicity.

3.3.2 Switched Voltage and Current Sources

Switched Voltage Sources. The DA conversion with switched voltage sources shown in
Fig. 3.43a is carried out with a reference voltage connected to a resistor network. The
resistor network consists of 2w resistors of equal resistance and is switched in stages to a
binary-controlled decoder so that, at the output, a voltage U2 is present corresponding to
the input code. Figure 3.43b shows the decoder for a 3-bit input code 101.

Switched Current Sources. DA conversion with 2w switched current sources is shown
in Fig. 3.44. The decoder switches the corresponding number of current sources onto the
current-voltage converter. The advantage of both techniques is the monotonicity which is
guaranteed for ideal switches but also for slightly deviating resistances. The large number
of resistors in switched current sources or the large number of switched current sources
causes problems for long word-lengths. The techniques are used in combination with other
methods for DA conversion of higher significant bits.

3.3.3 Weighted Resistors and Capacitors

A reduction in the number of identical resistors or current sources is achieved with the
following method.
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Figure 3.43 Switched voltage sources.
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Figure 3.44 Switched current sources.

Weighted Resistors. DA conversion with w switched current sources which are weighted
according to

I1 = 2I2 = 4I3 = · · · = 2w−1Iw (3.40)

is shown in Fig. 3.45. The output voltage is

U2 = −R · I = −R · (b1I120 + b2I221 + b3I322 + · · · + bwIw2w−1), (3.41)

where bn takes values 0 or 1. The implementation of DA conversion with switched current
sources is carried out with weighted resistors as shown in Fig. 3.46. The output voltage is

U2 = R · I = R

(
b1

2R
+ b2

4R
+ b4

8R
+ · · · + bw

2wR

)
UR (3.42)

= (b12−1 + b22−2 + b32−3 + · · · + bw2−w)UR. (3.43)

Weighted Capacitors. DA conversion with weighted capacitors is shown in Fig. 3.47.
During the first phase (switch position 1 in Fig. 3.47) all capacitors are discharged. During
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Figure 3.46 DA conversion with weighted resistors.

the second phase, all capacitors that belong to 1 bit are connected to a reference voltage.
Those capacitors belonging to 0 bits are connected to ground. The charge on the capacitors
Ca that are connected with the reference voltage can be set equal to the total charge on all
capacitors Cg , which leads to

UR Ca = UR

(
b1C + b2C

2
+ b3C

22
+ · · · + bwC

2w−1

)
= Cg U2 = 2 CU2. (3.44)

Hence, the output voltage is

U2 = (b12−1 + b22−2 + b32−3 + · · · + bw2−w)UR. (3.45)
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Figure 3.47 DA conversion with weighted capacitors.
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3.3.4 R-2R Resistor Networks

The DA conversion with switched current sources can also be carried out with an R-2R
resistor network as shown in Fig. 3.48. In contrast to the method with weighted resistors,
the ratio of the smallest to largest resistor is reduced to 2:1.
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Figure 3.48 Switched current sources with R-2R resistor network.

The weighting of currents is achieved by a current division at every junction. Looking
right from every junction, a resulting resistance R + 2R ‖ 2R = 2R is found which is equal
to the resistance in the vertical direction downwards from the junction. For the current
from junction 1 it follows that I1 = UR/2R, and for the current from junction 2 I2 = I1/2.
Hence, a binary weighting of the w currents is given by

I1 = 2I2 = 4I3 = · · · = 2w−1Iw. (3.46)

The output voltage U2 can be written as

U2 = − RI = −R

(
b1

2R
+ b2

4R
+ b3

8R
+ · · · + bw

2w−1R

)
UR (3.47)

= − UR(b12−1 + b22−2 + b32−3 + · · · + bw2−w). (3.48)

3.3.5 Delta-sigma DA Converter

A delta-sigma DA converter is shown in Fig. 3.49. The converter is provided with w-bit
data words by an input register with the sampling rate fS . This is followed by a sample rate
conversion up to LfS by upsampling and a digital low-pass filter. A delta-sigma modulator
converts the w-bit input signal into a 1-bit output signal. The delta-sigma modulator corre-
sponds to the model in Section 3.1.3. Subsequently, the DA conversion of the 1-bit signal
is performed followed by the reconstruction of the time-continuous signal by an analog
low-pass filter.

3.4 Java Applet – Oversampling and Quantization

The applet shown in Fig. 3.50 demonstrates the influence of oversampling on power spec-
tral density of the quantization error. For a given quantization word-length the noise level
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Figure 3.49 Delta-sigma DA converter.

can be reduced by changing the oversampling factor. The graphical interface of this applet
presents several quantization and oversampling values; these can be used to experiment the
noise reduction level. An additional FFT spectral representation provides a visualization of
this audio effect.

Figure 3.50 Java applet – oversampling and quantization.

The following functions can be selected on the lower right of the graphical user inter-
face:
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• Quantizer

– word-length w leads to quantization step size Q = 2w−1.

• Dither

– rect dither – uniform probability density function

– tri dither – triangular probability density function

– high-pass dither – triangular probability density function and high-pass power
spectral density.

• Noise shaping

– first-order H(z) = z−1.

• Oversampling factor

– Factors from 4 up to 64 can be tested depending on the CPU performance of
your machine.

You can choose between two predefined audio files from our web server (audio1.wav or
audio2.wav) or your own local wav file to be processed [Gui05].

3.5 Exercises

1. Oversampling

1. How do we define the power spectral density SXX(ej�) of a signal x(n)?

2. What is the relationship between signal power σ 2
X (variance) and power spectral

density SXX(ej�)?

3. Why do we need to oversample a time-domain signal?

4. Explain why an oversampled PCM A/D converter has lower quantization noise power
in the base-band than a Nyquist rate sampled PCM A/D converter.

5. How do we perform oversampling by a factor of L in the time domain?

6. Explain the frequency-domain interpretation of the oversampling operation.

7. What is the pass-band and stop-band frequency of the analog anti-aliasing filter?

8. What is the pass-band and stop-band frequency of the digital anti-aliasing filter
before downsampling?

9. How is the downsampling operation performed (time-domain and frequency-domain
explanation)?
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2. Delta-sigma Conversion

1. Why can we apply noise shaping in an oversampled AD converter?

2. Show how the delta-sigma converter (DSC) has a lower quantization error power in
the base-band than an oversampled PCM A/D converter.

3. How do the power spectral density and variance change in relation to the order of the
DSC?

4. How is noise shaping achieved in an oversampled delta-sigma AD converter?

5. Show the noise shaping effect (with Matlab plots) of a delta sigma modulator and
how the improvement of the signal-to-noise for pure oversampling and delta-sigma
modulator is achieved.

6. Using the previous Matlab plots, specify which order and oversampling factor L will
be needed for a 1-bit delta-sigma converter for SNR = 100 dB.

7. What is the difference between the delta-sigma modulator in the delta-sigma AD
converter and the delta-sigma DA converter?

8. How do we achieve a w-bit signal representation at Nyquist sampling frequency from
an oversampled 1-bit signal?

9. Why do we need to oversample a w-bit signal for a delta-sigma DA converter?
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Chapter 4

Audio Processing Systems

Digital signal processors (DSPs) are used for discrete-time signal processing. Their ar-
chitecture and instruction set is specially designed for real-time processing of signal pro-
cessing algorithms. DSPs of different manufacturers and their use in practical circuits
will be discussed. The restriction to the architecture and practical circuits will provide the
user with the criteria necessary for selecting a DSP for a particular application. From the
architectural features of different DSPs, the advantages of a certain processor with respect
to fast execution of algorithms (digital filter, adaptive filter, FFT, etc.) automatically result.
The programming methods and application programs are not dealt with here, because the
DSP user guides from different manufacturers provide adequate information in the form of
sample programs for a variety of signal processing algorithms.

After comparing DSPs with other microcomputers, the following topics will be dis-
cussed in the forthcoming sections:

• fixed-point DSPs;

• floating-point DSPs;

• development tools;

• single-processor systems (peripherals, control principles);

• multi-processor systems (coupling principles, control principles).

The internal design of microcomputers is mainly based on two architectures; the von Neu-
mann architecture which uses a shared instruction/data bus; and the Harvard architecture
which has separate buses for instructions and data. Processors based on these architectures
are CISCs, RISCs and DSPs. Their characteristics are given in Table 4.1. Besides the
internal properties listed in the table, DSPs have special on-chip peripherals which are
suited to signal processing applications. The fast response to external interrupts enables
their use in real-time operating systems.

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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Table 4.1 CISC, RISC and DSP.

Type Characteristics

CISC Complex Instruction Set Computer
• von Neumann architecture
• assembler programming
• large number of instructions
• computer families
• compilers
• application: universal microcomputers

RISC Reduced Instruction Set Computer
• von Neumann architecture/Harvard architecture
• number of instructions <50
• number of address modes <4, instruction formats <4
• hard-wired instruction (no microprogramming)
• processing most of the instructions in one cycle
• optimizing compilers for high-level programming languages
• application: workstations

DSP Digital Signal Processor
• Harvard architecture
• several internal data buses
• assembler programming
• parallel processing of several instructions in one cycle
• optimizing compilers for high-level programming languages
• real-time operating systems
• application: real-time signal processing

4.1 Digital Signal Processors

4.1.1 Fixed-point DSPs

The discrete-time and discrete-amplitude output of an AD converter is usually represented
in 2’s complement format. The processing of these number sequences is carried out with
fixed-point or floating-point arithmetic. The output of a processed signal is again in 2’s
complement format and is fed to a DA converter. The signed fractional representation (2’s
complement) is the common method for algorithms in fixed-point number representation.
For address generation and modulo operations unsigned integers are used. Figure 4.1 shows
a schematic diagram of a typical fixed-point DSP. The main building blocks are program
controller, arithmetic logic unit (ALU) with a multiplier-accumulator (MAC), program and
data memory and interfaces to external memory and peripherals. All blocks are connected
with each other by an internal bus system. The internal bus system has separate instruction
and data buses. The data bus itself can consist of more than one parallel bus enabling
it, for instance, to transmit both operands of a multiplication instruction to the MAC in
parallel. The internal memory consists of instruction and data RAM and additional ROM
memory. This internal memory permits fast execution of internal instructions and data
transfer. For increasing memory space, address/control and data buses are connected to
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external memories like EPROM, ROM and RAM. The connection of the external bus
system to the internal bus architecture has great influence on efficient execution of external
instructions as well as on processing external data. In order to connect serially operating
AD/DA converters, special serial interfaces with high transmission rates are offered by
several DSPs. Moreover, some processors support direct connection to an RS232 interface.
The control from a microprocessor can be achieved via a host interface with a word-length
of 8 bits.
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Figure 4.1 Schematic diagram of a fixed-point DSP.

An overview of fixed-point DSPs with respect to word-length and cycle time is shown
in Table 4.2. Basically, the precision of the arithmetic can be doubled if quantization affects
the stability and numeric precision of the applied algorithm. The cycle time in connection
with processing time (in processor cycles) of a combined multiplication and accumulation
command gives insight into the computing power of a particular processor type. The cycle
time directly results from the maximum clock frequency. The instruction processing time
depends mainly on the internal instruction and data structure as well as on the external
memory connections of the processor. The fast access to external instruction and data
memories is of special significance in complex algorithms and in processing huge data
loads. Further attention has to be paid to the linking of serial data connections with AD/DA
converters and the control by a host computer over a special host interface. Complex
interface circuits could therefore be avoided. For stand-alone solutions, program loading
from a simple external EPROM can also be done.

For signal processing algorithms, the following software commands are necessary:

1. MAC (multiply and accumulate) → combined multiplication and addition command;

2. simultaneous transfer of both operands for multiplication to the MAC (parallel move);

3. bit-reversed addressing (for FFT);

4. modulo addressing (for windowing and filtering).

Different signal processors have different processing times for FFT implementations.
The latest signal processors with improved architecture have shorter processing times. The
instruction cycles for the combined multiplication and accumulation command (applica-
tion: windowing, filtering) are approximately equal for different processors, but processing
cycles for external operands have to be considered.



100 Audio Processing Systems

Table 4.2 Fixed-point DSPs (Analog Devices AD, Texas Instruments TI, Motorola MOT, Agere
Systems AG).

Cycle time Computation power
Type Word-length MHz/ns MMACS

ADSP-BF533 16 756/1.3 1512
ADSP-BF561 16 756/1.3 3024
ADSP-T201 32 600/1.67 4800
TI-TMS320C6414 16 1000/1 4000
MOT-DSP56309 24 100/10 100
MOT-DSP56L307 24 160/6.3 160
AG-DSP16410 × 2 16 195/5.1 780

4.1.2 Floating-point DSPs

Figure 4.2 shows the block diagram of a typical floating-point DSP. The main characteris-
tics of the different architectures are the dual-port principle (Motorola, Texas Instruments)
and the external Harvard architecture (Analog Devices, NEC). Floating-point DSPs in-
ternally have multiple bus systems in order to accelerate data transfer to the processing
unit. An on-chip DMA controller and cache memory support higher data transfer rates. An
overview of floating-point DSPs is shown in Table 4.3. Besides the standardized floating-
point representation IEEE-754, there are also manufacturer-dependent number representa-
tions.
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Figure 4.2 Block diagram of a floating-point digital signal processor.
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Table 4.3 Floating-point DSPs.

Cycle time Computation power
Type Word-length MHz/ns MFLOPS

ADSP 21364 32 300/3.3 1800
ADSP 21267 32 150/6.6 900
ADSP-21161N 32 100/10 600
TI-TMS320C6711 32 200/5 1200

4.2 Digital Audio Interfaces

For transferring digital audio signals, two transmission standards have been established
by the AES (Audio Engineering Society) and the EBU (European Broadcasting Union), re-
spectively. These standards are for two-channel transmission [AES92] and for multichannel
transmission of up to 56 audio signals.
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Figure 4.3 Two-channel format.
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Figure 4.4 Two-channel format (subframe).

4.2.1 Two-channel AES/EBU Interface

For the two-channel AES/EBU interface, professional and consumer modes are defined.
The outer frame is identical for both modes and is shown in Fig. 4.3. For a sampling period
a frame is defined so that it consists of two subframes, for channel 1 with preamble X, and
for channel 2 with preamble Y. A total of 192 frames form a block, and the block start is
characterized by a special preamble Z. The bit allocation of a subframe consists of 32 bits
as in Fig. 4.4. The preamble consists of 4 bits (bit 0, . . . , 3) and the audio data of up to
24 bits (bit 4, . . . , 27). The last four bits of the subframe characterize Validity (validity
of data word or error), User Status (usable bit), Channel Status (from 192 bits/block = 24
bytes coded status information for the channel) and Parity (even parity). The transmission
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of the serial data bits is carried out with a biphase code. This is done with the help of an
XOR relationship between clock (of double bit rate) and the serial data bits (Fig. 4.5).
At the receiver, clock retrieval is achieved by detecting the preamble (X = 11100010,
Y = 11100100, Z = 11101000) as it violates the coding rule (see Fig. 4.6). The meaning
of the 24 bytes for channel status information is summarized in Table 4.4. An exact bit
allocation of the first three important bytes of this channel status information is presented
in Fig. 4.7. In the individual fields of byte 0, preemphasis and sampling rate are specified
besides professional/consumer modes and the characterization of data/audio (see Tables 4.5
and 4.6). Byte 1 determines the channel mode (Table 4.7). The consumer format (often la-
beled SPDIF = Sony/Philips Digital Interface Format) differs from the professional format
in the definition of the channel status information and the technical specifications for inputs
and outputs. The bit allocation for the first four bits of the channel information is shown
in Fig. 4.8. For consumer applications, two-wired leads with RCA connectors are used.
The inputs and outputs are asymmetrical. Also, optical connectors exist. For professional
use, shielded two-wired leads with XLR connectors and symmetrical inputs and outputs
(professional format) are used. Table 4.8 shows the electrical specifications for professional
AES/EBU interfaces.
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Figure 4.6 Preamble X.

4.2.2 MADI Interface

For connecting an audio processing system at different locations, a MADI interface
(Multichannel Audio Digital Interface) is used. A system link by MADI is presented in
Fig. 4.9. Analog/digital I/O systems consisting of AD/DA converters, AES/EBU interfaces
(AES) and sampling rate converters (SRC) are connected to digital distribution systems
with bi-directional MADI links. The actual audio signal processing is performed in special
DSP systems which are connected to the digital distribution systems by MADI links. The
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Table 4.4 Channel status bytes.

Byte Description

0 Emphasis, sampling rate
1 Channel use
2 Sample length
3 Vector for byte 1
4 Reference bits
5 Reserved

6–9 4 bytes of ASCII origin
10–13 4 bytes of ASCII destination
14–17 4 bytes of local address
18–21 Time code

22 Flags
23 CRC
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Figure 4.7 Bytes 0–2 of channel status information.

Table 4.5 Emphasis field.

0 None indicated, override enabled
4 None indicated, override disabled
6 50/15 µs emphasis
7 CCITT J.17 emphasis

Table 4.6 Sampling rate field.

0 None indicated (48 kHz default)
1 48 kHz
2 44.1 kHz
3 32 kHz
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Table 4.7 Channel mode.

0 None indicated (2 channel default)
1 Two channel
2 Monaural
3 Primary/secondary (A = primary, B = secondary)
4 Stereo (A = left, B = right)
7 Vector to byte 3
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Figure 4.8 Bytes 0–3 (consumer format).

Table 4.8 Electrical specifications of professional interfaces.

Output impedance Signal amplitude Jitter

110 � 2–7 V max. 20 ns

Input impedance Signal amplitude Connect.

110 � min. 200 mV XLR

MADI format is derived from the two-channel AES/EBU format and allows the transmis-
sion of 56 digital mono channels (see Fig. 4.10) within a sampling period. The MADI
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frame consists of 56 AES/EBU subframes. Each channel has a preamble containing the
information shown in Fig. 4.10. The bit 0 is responsible for identifying the first MADI
channel (MADI Channel 0). Table 4.9 shows the sampling rates and the corresponding
data transfer rates. The maximum data rate of 96.768 Mbit/s is required at sampling rate of
48 kHz + 12.5%. Data transmission is done by FDDI techniques (Fiber Distributed Digital
Interface). The transmission rate of 125 Mbit/s is implemented with special TAXI chips.
The transmission for a coaxial cable is already specified (see Table 4.10). The optical
transmission medium for audio applications is not yet defined.
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Figure 4.9 A system link by MADI.

Table 4.9 MADI specifications.

Sampling rate 32 kHz–48 kHz ± 12.5%

Transmission rate 125 Mbit/s
Data transfer rate 100 Mbit/s
Max. data transfer rate 96.768 Mbit/s (56 channels at 48 kHz + 12.5%)
Min. data transfer rate 50.176 Mbit/s (56 channels at 32 kHz − 12.5%)

A unidirectional MADI link is shown in Fig. 4.11. The MADI transmitter and receiver
must be synchronized by a common master clock. The transmission between FDDI chips
is performed by a transmitter with integrated clock generation and clock retrieval at the
receiver.
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Figure 4.10 MADI frame format.

Table 4.10 Electrical specifications (MADI).

Output impedance Signal ampl. Cable length Connect.

75 � 0.3–0.7 V 50 m (coaxial cable) BNC
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4.3 Single-processor Systems

4.3.1 Peripherals

A common system configuration is shown in Fig. 4.12. It consists of a DSP, clock gener-
ation, instruction and data memory and a BOOT-EPROM. After RESET, the program is
loaded into the internal RAM of the signal processor. The loading is done byte by byte
so that only an EPROM with 8-bit data word-length is necessary. In terms of circuit com-
plexity the connection of AD/DA converters over serial interfaces is the simplest solution.
Most fixed-point signal processors support serial connection where a lead ‘connection’
for bit clock SCLK, sampling clock/word clock WCLK, and the serial input and output
data SDRX/SDTX are used. The clock signals are obtained from a higher reference clock
CLKIN (see Fig. 4.13). For non-serially operating AD/DA converters, parallel interfaces
can also be connected to the DSP.
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Figure 4.12 DSP system with two-channel AD/DA converters (C = control, A = address, D =
data, SDATA = serial data, SCLK = bit clock, WCLK = word clock, SDRX = serial input, SDTX =
serial output).

4.3.2 Control

For controlling digital signal processors and data exchange with host processors, some
DSPs provide a special host interface that can be read and written directly (see Fig. 4.14).
The data word-length depends on the processor. The host interface is included in the
external address space of the host or is connected to a local bus system, for instance a
PC bus.

A DSP as a coprocessor for special signal processing problems can be used by con-
necting it with a dual-port RAM and additional interrupt logic to a host processor. This
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Figure 4.14 Control via a host interface of the DSP (CS = chip select, R/W = read/write, A =
address, D = data).

enables data transmission between the DSP system and host processor (see Fig. 4.15). This
results in a complete separation from the host processor. The communication can either be
interrupt-controlled or carried out by polling a memory address in a dual-port RAM.
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Figure 4.15 Control over a dual-port RAM and interrupt.

A very simple control can be done directly via an RS232-interface. This is can be car-
ried out via an additional asynchronous serial interface (Serial Communication Interface)
of the DSP (see Fig. 4.16).
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Figure 4.16 Control over a serial interface (RS232, RS422).
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Figure 4.17 Cascading and pipelining (SDATA = serial data, SCLK = bit clock, SYNC =
synchronization).
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��&+& ��&+&

�$�N1�*�$
�

��� ��� ��� ���

&��

Figure 4.19 Time-multiplex connection (ADR = address at a particular time).

4.4 Multi-processor Systems

The design of multi-processor systems can be carried out by linking signal processors by
serial or parallel interfaces. Besides purely multi-processor DSP systems, an additional
connection to standard bus systems can be made as well.
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Figure 4.22 Connection over a four-port RAM.
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Figure 4.23 Signal processor systems based on standard bus system.

4.4.1 Connection via Serial Links

In connecting via serial links, signal processors are cascaded so that different program
segments are distributed over different processors (see Fig. 4.17). The serial output data is
fed into the serial input of the following signal processor. A synchronous bit clock and a
common synchronization SYNC control the serial interface. With the help of a serial time-
multiplex mode (Fig. 4.18) a parallel configuration can be designed which, for instance,
feeds several parallel signal processors with serial input data. The serial outputs of signal
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Figure 4.24 Audio system.

processors provide output data in time-multiplex. A complete time-multiplex connection
via the serial interface of the signal processor is shown in Fig. 4.19. The allocation of a
signal processor at a particular time slot can either be fixed or carried out by an address
control ADR.

4.4.2 Connection via Parallel Links

Connection via parallel links is possible with dual-port processors as well as with dual-port
RAMs (see Fig. 4.20). A parallel configuration of signal processor systems with a local bus
is shown in Fig. 4.21. The connection to the local bus is done either over a dual-port RAM
or directly with a second signal processor port. Another possible configuration is the use
of a four-port RAM as shown in Fig. 4.22. Here, one processor serves as a connector to a
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Figure 4.25 Scalable digital audio system.
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Figure 4.26 Subsystem.

system bus and feeds three other processors over a four-port RAM with control and data
information.

4.4.3 Connection via Standard Bus Systems

The use of standard bus systems (VME bus, MULTIBUS, PC bus) to control multi-processor
systems is presented in Fig. 4.23. The connection of signal processors can either be carried
out directly over a control bus or with the help of a special data bus. This parallel data bus
can operate in time-multiplex. Hence, control information and data are separated. A few of
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the criteria for standard bus systems are data transfer rate, interrupt request and processing,
the option of several masters, auxiliary functions (power supply, bus error, battery buffer)
and mechanical requirements.

4.4.4 Scalable Audio System

The functional segmentation of an audio system into different stages, the analog, interface,
digital and man–machine stages, is shown in Fig. 4.24. All stages are controlled by a
LAN (Local Area Network). In the analog domain, crosspoint switches and microphone
amplifiers are controlled. In the interface domain AD/DA converters and sampling rate
converters are used. The connection to a signal processing system is done by AES/EBU and
MADI interfaces. A host computer with a control console for the sound engineer serves as
the central control unit.

The realization of the digital domain with the help of a standard bus system is shown
in Fig. 4.25. A central mixing console controls several subsystems over a host. These sub-
systems have special control computers which control several DSP modules. The system
concept is scalable within a subsystem and by extension to several subsystems. Audio
data transfer between subsystems is performed by AES/EBU and MADI interfaces. The
segmentation within a subsystem is shown in Fig. 4.26. Here, besides DSP modules, digital
interfaces (AES/EBU, MADI, sampling rate converters, etc.) and AD/DA converters can
be integrated.
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Chapter 5

Equalizers

Spectral sound equalization is one of the most important methods for processing audio
signals. Equalizers are found in various forms in the transmission of audio signals from a
sound studio to the listener. The more complex filter functions are used in sound studios.
But in almost every consumer product like car radios, hifi amplifiers, simple filter func-
tions are used for sound equalization. We first discuss basic filter types followed by the
design and implementation of recursive audio filters. In Sections 5.3 and 5.4 linear phase
nonrecursive filter structures and their implementation are introduced.

5.1 Basics

For filtering of audio signals the following filter types are used:

• Low-pass and high-pass filters with cutoff frequency fc (3 dB cutoff frequency)
are shown with their magnitude response in Fig. 5.1. They have a pass-band in the
lower and higher frequency range, respectively.

• Band-pass and band-stop filters (magnitude responses in Fig. 5.1) have a center
frequency fc and a lower and upper fl und fu cutoff frequency. They have a pass-
and stop-band in the middle of the frequency range. For the bandwidth of a band-pass
or a band-stop filter we have

fb = fu − fl . (5.1)

Band-pass filters with a constant relative bandwidth fb/fc are very important for
audio applications [Cre03]. The bandwidth is proportional to the center frequency,
which is given by fc = √

fl · fu (see Fig. 5.2).

• Octave filters are band-pass filters with special cutoff frequencies given by

fu = 2 · fl, (5.2)

fc =√fl · fu = √
2 · fl . (5.3)

A spectral decomposition of the audio frequency range with octave filters is shown
in Fig. 5.3. At the lower and upper cutoff frequency an attenuation of −3 dB occurs.

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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Figure 5.1 Linear magnitude responses of low-pass, high-pass, band-pass, and band-stop filters.

The upper octave band is represented as a high-pass. A parallel connection of octave
filters can be used for a spectral analysis of the audio signal in octave frequency
bands. This decomposition is used for the signal power distribution across the octave
bands. For the center frequencies of octave bands we get fci = 2 · fci−1 . The weight-
ing of octave bands with gain factors Ai and summation of the weighted octave
bands represents an octave equalizer for sound processing (see Fig. 5.4). For this
application the lower and upper cutoff frequencies need an attenuation of −6 dB,
such that a sinusoid at the crossover frequency has gain of 0 dB. The attenuation
of −6 dB is achieved through a series connection of two octave filters with −3 dB
attenuation.

• One-third octave filters are band-pass filters (see Fig. 5.3) with cutoff frequencies
given by

fu = 3
√

2 · fl, (5.4)

fc = 6
√

2 · fl. (5.5)

The attenuation at the lower and upper cutoff frequency is −3 dB. One-third octave
filters split an octave into three frequency bands (see Fig. 5.3).
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Figure 5.2 Logarithmic magnitude responses of band-pass filters with constant relative bandwidth.
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Figure 5.3 Linear magnitude responses of octave filters and decomposition of an octave band by
three one-third octave filters.

• Shelving filters and peak filters are special weighting filters, which are based on
low-pass/high-pass/band-pass filters and a direct path (see Section 5.2.2). They have
no stop-band compared to low-pass/high-pass/band-pass filters. They are used in
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Figure 5.4 Parallel connection of band-pass filters (BP) for octave/one-third octave equalizers with
gain factors (Ai for octave or one-third octave band).

a series connection of shelving and peak filters as shown in Fig. 5.5. The lower
frequency range is equalized by low-pass shelving filters and the higher frequencies
are modified by high-pass shelving filters. Both filter types allow the adjustment of
cutoff frequency and gain factor. For the mid-frequency range a series connection
of peak filters with variable center frequency, bandwidth, and gain factor are used.
These shelving and peak filters can also be applied for octave and one-third octave
equalizers in a series connection.
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Figure 5.5 Series connection of shelving and peak filters (low-frequency LF, high-frequency HF).

• Weighting filters are used for signal level and noise measurement applications. The
signal from a device under test is first passed through the weighting filter and then a
root mean square or peak value measurement is performed. The two most often used
filters are the A-weighting filter and the CCIR-468 weighting filter (see Fig. 5.6).
Both weighting filters take the increased sensitivity of the human perception in the
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1–6 kHz frequency range into account. The 0 dB of the magnitude response of both
filters is crossed at 1 kHz. The CCIR-468 weighting filter has a gain of 12 dB at
6 kHz. A variant of the CCIR-468 filter is the ITU-ARM 2 kHz weighting filter,
which is a 5.6 dB down tilted version of the CCIR-468 filters and passes the 0 dB at
2 kHz.
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Figure 5.6 Magnitude responses of weighting filters for root mean square and peak value
measurements.

5.2 Recursive Audio Filters

5.2.1 Design

A certain filter response can be approximated by two kinds of transfer function. On the one
hand, the combination of poles and zeros leads to a very low-order transfer function H(z) in
fractional form, which solves the given approximation problem. The digital implementation
of this transfer function needs recursive procedures owing to its poles. On the other hand,
the approximation problem can be solved by placing only zeros in the z-plane. This transfer
function H(z) has, besides its zeros, a corresponding number of poles at the origin of
the z-plane. The order of this transfer function, for the same approximation conditions, is
substantially higher than for transfer functions consisting of poles and zeros. In view of
an economical implementation of a filter algorithm in terms of computational complexity,
recursive filters achieve shorter computing time owing to their lower order. For a sampling
rate of 48 kHz, the algorithm has 20.83 µs processing time available. With the DSPs
presently available it is easy to implement recursive digital filters for audio applications
within this sampling period using only one DSP. To design the typical audio equalizers
we will start with filter designs in the S-domain. These filters will then be mapped to the
Z-domain by the bilinear transformation.

Low-pass/High-pass Filters. In order to limit the audio spectrum, low-pass and high-
pass filters with Butterworth response are used in analog mixers. They offer a monotonic
pass-band and a monotonically decreasing stop-band attenuation per octave (n · 6 dB/oct.)
that is determined by the filter order. Low-pass filters of the second and fourth order
are commonly used. The normalized and denormalized second-order low-pass transfer
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functions are given by

HLP(s) = 1

s2 + 1
Q∞ s + 1

and HLP(s) = ω2
c

s2 + ωc

Q∞ s + ω2
c

, (5.6)

where ωc is the cutoff frequency and Q∞ is the pole quality factor. The Q-factor Q∞ of a
Butterworth approximation is equal to 1/

√
2. The denormalization of a transfer function is

obtained by replacing the Laplace variable s by s/ωg in the normalized transfer function.
The corresponding second-order high-pass transfer functions

HHP(s) = s2

s2 + 1
Q∞ s + 1

and HHP(s) = s2

s2 + ωc

Q∞ s + ω2
c

(5.7)

are obtained by a low-pass to high-pass transformation. Figure 5.7 shows the pole-zero
locations in the s-plane. The amplitude frequency response of a high-pass filter with a 3 dB
cutoff frequency of 50 Hz and a low-pass filter with a 3 dB cutoff frequency of 5000 Hz
are shown in Fig. 5.8. Second- and fourth-order filters are shown.
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Figure 5.7 Pole-zero location for (a) second-order low-pass and (b) second-order high-pass.
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Figure 5.8 Frequency response of low-pass and high-pass filters – high-pass fc = 50 Hz
(second/fourth order), low-pass fc = 5000 Hz (second/fourth order).

Table 5.1 summarizes the transfer functions of low-pass and high-pass filters with
Butterworth response.
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Table 5.1 Transfer functions of low-pass and high-pass filters.

Low-pass H(s) = 1

s2 + √
2s + 1

second order

H(s) = 1

(s2 + 1.848s + 1)(s2 + 0.765s + 1)
fourth order

High-pass H(s) = s2

s2 + √
2s + 1

second order

H(s) = s4

(s2 + 1.848s + 1)(s2 + 0.765s + 1)
fourth order

Band-pass and band-stop filters. The normalized and denormalized band-pass transfer
functions of second order are

HBP(s) =
1

Q∞ s

s2 + 1
Q∞ s + 1

and HBP(s) =
ωc

Q∞ s

s2 + ωc

Q∞ s + ω2
c

, (5.8)

and the band-stop transfer functions are given by

HBS(s) = s2 − 1

s2 + 1
Q∞ s + 1

and HBS(s) = s2 − ω2
c

s2 + ωc

Q∞ s + ω2
c

. (5.9)

The relative bandwidth can be expressed by the Q-factor

Q∞ = fc

fb

, (5.10)

which is the ratio of center frequency fc and the 3 dB bandwidth given by fb. The magni-
tude responses of band-pass filters with constant relative bandwidth are shown in Fig. 5.2.
Such filters are also called constant-Q filters. The geometric symmetric behavior of the
frequency response regarding the center frequency fc is clearly noticeable (symmetry re-
garding the center frequency using a logarithmic frequency axis).

Shelving Filters. Besides the purely band-limiting filters like low-pass and high-pass fil-
ters, shelving filters are used to perform weighting of certain frequencies. A simple ap-
proach for a first-order low-pass shelving filter is given by

H(s) = 1 + HLP(s) = 1 + H0

s + 1
. (5.11)

It consists of a first-order low-pass filter with dc amplification of H0 connected in parallel
with an all-pass system of transfer function equal to 1. Equation (5.11) can be written as

H(s) = s + (1 + H0)

s + 1
= s + V0

s + 1
, (5.12)
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where V0 determines the amplification at ω = 0. By changing the parameter V0, any desired
boost (V0 > 1) and cut (V0 < 1) level can be adjusted. Figure 5.9 shows the frequency
responses for fc = 100 Hz. For V0 < 1, the cutoff frequency is dependent on V0 and is
moved toward lower frequencies.
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Figure 5.9 Frequency response of transfer function (5.12) with varying V0 and cutoff frequency
fc = 100 Hz.

In order to obtain a symmetrical frequency response with respect to the zero decibel line
without changing the cutoff frequency, it is necessary to invert the transfer function (5.12)
in the case of cut (V0 < 1). This has the effect of swapping poles with zeros and leads to
the transfer function

H(s) = s + 1

s + V0
(5.13)

for the cut case. Figure 5.10 shows the corresponding frequency responses for varying V0.
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Figure 5.10 Frequency responses of transfer function (5.13) with varying V0 and cutoff frequency
fc = 100 Hz.

Finally, Figure 5.11 shows the locations of poles and zeros for both the boost and the
cut case. By moving zeros and poles on the negative σ -axis, boost and cut can be adjusted.
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Figure 5.11 Pole-zero locations of a first-order low-frequency shelving filter.

The equivalent shelving filter for high frequencies can be obtained by

H(s) = 1 + HHP(s) = 1 + H0s

s + 1
, (5.14)

which is a parallel connection of a first-order high-pass with gain H0 and a system with
transfer function equal to 1. In the boost case the transfer function can written with V0 =
H0 + 1 as

H(s) = sV0 + 1

s + 1
, V0 > 1, (5.15)

and for cut we get

H(s) = s + 1

sV0 + 1
, V0 > 1. (5.16)

The parameter V0 determines the value of the transfer function H(s) at ω = ∞ for high-
frequency shelving filters.

In order to increase the slope of the filter response in the transition band, a general
second-order transfer function

H(s) = a2s
2 + a1s + a0

s2 + √
2s + 1

(5.17)

is considered, in which complex zeros are added to the complex poles. The calculation of
poles leads to

s∞ 1/2 =
√

1
2 (−1 ± j). (5.18)

If the complex zeros

s◦ 1/2 =
√

V0

2
(−1 ± j) (5.19)

are moved on a straight line with the help of the parameter V0 (see Fig. 5.12), the transfer
function

H(s) = s2 + √
2V0s + V0

s2 + √
2s + 1

(5.20)

of a second-order low-frequency shelving filter is obtained. The parameter V0 determines
the boost for low frequencies. The cut case can be achieved by inversion of (5.20).
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Figure 5.12 Pole-zero locations of a second-order low-frequency shelving filter.

A low-pass to high-pass transformation of (5.20) provides the transfer function

H(s) = V0s
2 + √

2V0s + 1

s2 + √
2s + 1

(5.21)

of a second-order high-frequency shelving filter. The zeros

s◦ 1/2 =
√

1

2V0
(−1 ± j) (5.22)

are moved on a straight line toward the origin with increasing V0 (see Fig. 5.13). The cut
case is obtained by inverting the transfer function (5.21). Figure 5.14 shows the amplitude
frequency response of a second-order low-frequency shelving filter with cutoff frequency
100 Hz and a second-order high-frequency shelving filter with cutoff frequency 5000 Hz
(parameter V0).
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Figure 5.13 Pole-zero locations of second-order high-frequency shelving filter.

Peak Filter. Another equalizer used for boosting or cutting any desired frequency is the
peak filter. A peak filter can be obtained by a parallel connection of a direct path and a
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Figure 5.14 Frequency responses of second-order low-/high-frequency shelving filters – low-
frequency shelving filter fc = 100 Hz (parameter V0), high-frequency shelving filter fc = 5000 Hz
(parameter V0).

band-pass according to
H(s) = 1 + HBP(s). (5.23)

With the help of a second-order band-pass transfer function

HBP(s) = (H0/Q∞)s

s2 + 1
Q∞ s + 1

, (5.24)

the transfer function

H(s) = 1 + HBP(s) = s2 + 1+H0
Q∞ s + 1

s2 + 1
Q∞ s + 1

= s2 + V0
Q∞ s + 1

s2 + 1
Q∞ s + 1

(5.25)

of a peak filter can be derived. It can be shown that the maximum of the amplitude fre-
quency response at the center frequency is determined by the parameter V0. The relative
bandwidth is fixed by the Q-factor. The geometrical symmetry of the frequency response
relative to the center frequency remains constant for the transfer function of a peak fil-
ter (5.25). The poles and zeros lie on the unit circle. By adjusting the parameter V0, the
complex zeros are moved with respect to the complex poles. Figure 5.15 shows this for the
boost and cut cases. With increasing Q-factor, the complex poles move toward the jω-axis
on the unit circle.

Figure 5.16 shows the amplitude frequency response of a peak filter by changing the
parameter V0 at a center frequency of 500 Hz and a Q-factor of 1.25. Figure 5.17 shows
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Figure 5.15 Pole-zero locations of a second-order peak filter.

the variation of the Q-factor Q∞ at a center frequency of 500 Hz, a boost/cut of ±16 dB
and Q-factor of 1.25. Finally, the variation of the center frequency with boost and cut of
±16 dB and a Q-factor 1.25 is shown in Fig. 5.18.
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Figure 5.16 Frequency response of a peak filter – fc = 500 Hz, Q∞ = 1.25, cut parameter V0.

Mapping to Z-domain. In order to implement a digital filter, the filter designed in the
S-domain with transfer function H(s) is converted to the Z-domain with the help of a
suitable transformation to obtain the transfer function H(z). The impulse-invariant trans-
formation is not suitable as it leads to overlapping effects if the transfer function H(s) is not
band-limited to half the sampling rate. An independent mapping of poles and zeros from
the S-domain into poles and zeros in the Z-domain is possible with help of the bilinear
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Figure 5.17 Frequency responses of peak filters – fc = 500 Hz, boost/cut ±16 dB, Q∞ = 0.707,
1.25, 2.5, 3, 5.
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Figure 5.18 Frequency responses of peak filters – boost/cut ±16 dB, Q∞ = 1.25, fc = 50, 200,
1000, 4000 Hz.
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transformation given by

s = 2

T

z − 1

z + 1
. (5.26)

Tables 5.2–5.5 contain the coefficients of the second-order transfer function

H(z) = a0 + a1z
−1 + a2z

−2

1 + b1z−1 + b2z−2
, (5.27)

which are determined by the bilinear transformation and the auxiliary variable K =
tan(ωcT /2) for all audio filter types discussed. Further filter designs of peak and shelving
filters are discussed in [Moo83, Whi86, Sha92, Bri94, Orf96a, Dat97, Cla00]. A method
for reducing the warping effect of the bilinear transform is proposed in [Orf96b]. Strategies
for time-variant switching of audio filters can be found in [Rab88, Mou90, Zöl93, Din95,
Väl98].

Table 5.2 Low-pass/high-pass/band-pass filter design.

Low-pass (second order)

a0 a1 a2 b1 b2

K2

1 + √
2K + K2

2K2

1 + √
2K + K2

K2

1 + √
2K + K2

2(K2 − 1)

1 + √
2K + K2

1 − √
2K + K2

1 + √
2K + K2

High-pass (second order)

a0 a1 a2 b1 b2

1

1 + √
2K + K2

−2

1 + √
2K + K2

1

1 + √
2K + K2

2(K2 − 1)

1 + √
2K + K2

1 − √
2K + K2

1 + √
2K + K2

Band-pass (second order)

a0 a1 a2 b1 b2
1
Q

K

1 + 1
QK + K2

0 −
1
Q

K

1 + 1
QK + K2

2(K2 − 1)

1 + 1
QK + K2

1 − 1
Q

K + K2

1 + 1
QK + K2

5.2.2 Parametric Filter Structures

Parametric filter structures allow direct access to the parameters of the transfer function,
like center/cutoff frequency, bandwidth and gain, via control of associated coefficients. To
modify one of these parameters, it is therefore not necessary to compute a complete set
of coefficients for a second-order transfer function, but instead only one coefficient in the
filter structure is calculated.

Independent control of gain, cutoff/center frequency and bandwidth for shelving and
peak filters is achieved by a feed forward (FF) structure for boost and a feed backward

beq03144
Sticky Note
K= Tan ( Pi * Fc / Fs)
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Table 5.3 Peak filter design.

Peak (boost V0 = 10G/20)

a0 a1 a2 b1 b2

1 + V0
Q∞ K + K2

1 + 1
Q∞ K + K2

2(K2 − 1)

1 + 1
Q∞ K + K2

1 − V0
Q∞ K + K2

1 + 1
Q∞ K + K2

2(K2 − 1)

1 + 1
Q∞ K + K2

1 − 1
Q∞ K + K2

1 + 1
Q∞ K + K2

Peak (cut V0 = 10−G/20)

a0 a1 a2 b1 b2

1 + 1
Q∞ K + K2

1 + V0
Q∞ K + K2

2(K2 − 1)

1 + V0
Q∞ K + K2

1 − 1
Q∞ K + K2

1 + V0
Q∞ K + K2

2(K2 − 1)

1 + V0
Q∞ K + K2

1 − V0
Q∞ K + K2

1 + V0
Q∞ K + K2

Table 5.4 Low-frequency shelving filter design.

Low-frequency shelving (boost V0 = 10G/20)

a0 a1 a2 b1 b2

1 +√2V0K + V0K2

1 + √
2K + K2

2(V0K2 − 1)

1 + √
2K + K2

1 −√2V0K + V0K2

1 + √
2K + K2

2(K2 − 1)

1 + √
2K + K2

1 − √
2K + K2

1 + √
2K + K2

Low-frequency shelving (cut V0 = 10−G/20)

a0 a1 a2 b1 b2

1 + √
2K + K2

1 +√2V0K + V0K2

2(K2 − 1)

1 +√2V0K + V0K2

1 − √
2K + K2

1 +√2V0K + V0K2

2(V0K2 − 1)

1 +√2V0K + V0K2

1 −√2V0K + V0K2

1 +√2V0K + V0K2

Table 5.5 High-frequency shelving filter design.

High-frequency shelving (boost V0 = 10G/20)

a0 a1 a2 b1 b2

V0 +√2V0K + K2

1 + √
2K + K2

2(K2 − V0)

1 + √
2K + K2

V0 −√2V0K + K2

1 + √
2K + K2

2(K2 − 1)

1 + √
2K + K2

1 − √
2K + K2

1 + √
2K + K2

High-frequency shelving (cut V0 = 10−G/20)

a0 a1 a2 b1 b2

1 + √
2K + K2

V0 +√2V0K + K2
2(K2 − 1)

V0 +√2V0K + K2
1 − √

2K + K2

V0 +√2V0K + K2
2(K2/V0 − 1)

1 +√2/V0K + K2/V0

1 −√2/V0K + K2/V0

1 +√2/V0K + K2/V0

(FB) structure for cut as shown in Fig. 5.19. The corresponding transfer functions are:

GFW(z) = 1 + H0H(z), (5.28)

GFB(z) = 1

1 + H0H(z)
. (5.29)
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H(z)

x(n) y(n)
-

BoostCut

H0

Figure 5.19 Filter structure for implementing boost and cut filters.

The boost/cut factor is V0 = 1 + H0. For digital filter implementations, it is necessary
for the FB case that the inner transfer function be of the form H(z) = z−1H1(z) to ensure
causality. A parametric filter structure proposed by Harris [Har93] is based on the FF/FB
technique, but the frequency response shows slight deviations near z = 1 and z = −1 from
that desired. This is due to the z−1 in the FF/FB branch. Delay-free loops inside filter
computations can be solved by the methods presented in [Här98, Fon01, Fon03]. Higher-
order parametric filter designs have been introduced in [Kei04, Orf05, Hol06a, Hol06b,
Hol06c, Hol06d]. It is possible to implement typical audio filters with only an FF structure.
The complete decoupling of the control parameters is possible for the boost case, but there
remains a coupling between bandwidth and gain factor for the cut case. In the following,
two approaches for parametric audio filter structures based on an all-pass decomposition of
the transfer function will be discussed.

Regalia Filter [Reg87]. The denormalized transfer function of a first-order shelving filter
is given by

H(s) = s + V0ωc

s + ωc

(5.30)

with

H(0) = V0,

H(∞) = 1.

A decomposition of (5.30) leads to

H(s) = s

s + ωc

+ V0
ωc

s + ωc

. (5.31)

The low-pass and high-pass transfer functions in (5.31) can be expressed by an all-pass
decomposition of the form

s

s + ωc

= 1

2

[
1 + s − ωc

s + ωc

]
, (5.32)

V0ωc

s + ωc

= V0

2

[
1 − s − ωc

s + ωc

]
. (5.33)

With the all-pass transfer function

AB(s) = s − ωc

s + ωc

(5.34)
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for boost, (5.30) can be rewritten as

H(s) = 1
2 [1 + AB(s)] + 1

2V0[1 − AB(s)]. (5.35)

The bilinear transformation

s = 2

T

z − 1

z + 1

leads to
H(z) = 1

2 [1 + AB(z)] + 1
2V0[1 − AB(z)] (5.36)

with

AB(z) = − z−1 + aB

1 + aBz−1
(5.37)

and the frequency parameter

aB = tan(ωcT /2) − 1

tan(ωcT /2) + 1
. (5.38)

A filter structure for direct implementation of (5.36) is presented in Fig. 5.20a. Other
possible structures can be seen in Fig. 5.20b,c. For the cut case V0 < 1, the cutoff frequency
of the filter moves toward lower frequencies [Reg87].

A(z)x(n) y(n)

V0 /2

1/2

-

A

-

A(z)

x(n) y(n)

V0 /2

1/2B

A(z)

x(n) y(n)

(1+V0 )/2

(1-V0 )/2C

Figure 5.20 Filter structures by Regalia.

In order to retain the cutoff frequency for the cut case [Zöl95], the denormalized transfer
function of a first-order shelving filter (cut)

H(s) = s + ωc

s + ωc/V0
, (5.39)
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with the boundary conditions

H(0) = V0,

H(∞) = 1,

can be decomposed as

H(s) = s

s + ωc/V0
+ ωc

s + ωc/V0
. (5.40)

With the all-pass decompositions

s

s + ωc/V0
= 1

2

[
1 + s − ωc/V0

s + ωc/V0

]
, (5.41)

ωc

s + ωc/V0
= V0

2

[
1 − s − ωc/V0

s + ωc/V0

]
, (5.42)

and the all-pass transfer function

AC(s) = s − ωc/V0

s + ωc/V0
(5.43)

for cut, (5.39) can be rewritten as

H(s) = 1

2
[1 + AC(s)] + V0

2
[1 − AC(s)]. (5.44)

The bilinear transformation leads to

H(z) = 1

2
[1 + AC(z)] + V0

2
[1 − AC(z)] (5.45)

with

AC(z) = − z−1 + aC

1 + aCz−1
(5.46)

and the frequency parameter

aC = tan(ωcT /2) − V0

tan(ωcT /2) + V0
. (5.47)

Due to (5.45) and (5.36), boost and cut can be implemented with the same filter structure
(see Fig. 5.20). However, it has to be noted that the frequency parameter aC as in (5.47) for
cut depends on the cutoff frequency and gain.

A second-order peak filter is obtained by a low-pass to band-pass transformation ac-
cording to

z−1 → −z−1 z−1 + d

1 + dz−1
. (5.48)

For an all-pass as given in (5.37) and (5.46), the second-order all-pass is given by

ABC(z) = z−2 + d(1 + aBC)z−1 + aBC

1 + d(1 + aBC)z−1 + aBCz−2 (5.49)
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with parameters (cut as in [Zöl95])

d = − cos(�c), (5.50)

V0 = H(ej�c), (5.51)

aB = 1 − tan(ωbT /2)

1 + tan(ωbT /2)
, (5.52)

aC = V0 − tan(ωbT /2)

V0 + tan(ωbT /2)
. (5.53)

The center frequency fc is fixed by the parameter d , the bandwidth fb by the parameters
aB and aC , and gain by the parameter V0.

Simplified All-pass Decomposition [Zöl95]. The transfer function of a first-order low-
frequency shelving filter can be decomposed as

H(s) = s + V0ωc

s + ωc

= 1 + H0
ωc

s + ωc

(5.54)

= 1 + H0

2

[
1 − s − ωc

s + ωc

]
(5.55)

with

V0 = H(s = 0), (5.56)

H0 = V0 − 1, (5.57)

V0 = 10G/20 (G in dB). (5.58)

The transfer function (5.55) is composed of a direct branch and a low-pass filter. The
first-order low-pass filter is again implemented by an all-pass decomposition. Applying
the bilinear transformation to (5.55) leads to

H(z) = 1 + H0

2
[1 − A(z)] (5.59)

with

A(z) = − z−1 + aB

1 + aBz−1
. (5.60)

For cut, the following decomposition can be derived:

H(s) = s + ωc

s + ωc/V0
(5.61)

= 1 + (V0 − 1)︸ ︷︷ ︸
H0

ωc/V0

s + ωc/V0
(5.62)

= 1 + H0

2

[
1 − s − ωc/V0

s + ωc/V0

]
. (5.63)
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The bilinear transformation applied to (5.63) again gives (5.59). The filter structure is
identical for boost and cut. The frequency parameter aB for boost and aC for cut can be
calculated as

aB = tan(ωcT /2) − 1

tan(ωcT /2) + 1
, (5.64)

aC = tan(ωcT /2) − V0

tan(ωcT /2) + V0
. (5.65)

The transfer function of a first-order low-frequency shelving filter can be calculated as

H(z) = 1 + (1 + aBC)
H0
2 + (aBC + (1 + aBC)

H0
2 )z−1

1 + aBCz−1
. (5.66)

With A1(z) = −A(z) the signal flow chart in Fig. 5.21 shows a first-order low-pass
filter and a first-order low-frequency shelving filter.

A1(z)x(n) y(n)
H0/2

first-order LF shelving filter

A1(z)x(n) y(n)
1 /2

first-order low-pass filter

Figure 5.21 Low-frequency shelving filter and first-order low-pass filter.

The decomposition of a denormalized transfer function of a first-order high-frequency
shelving filter can be given in the form

H(s) = sV0 + ωc

s + ωc

= 1 + H0
s

s + ωc

(5.67)

= 1 + H0

2

[
1 + s − ωc

s + ωc

]
(5.68)

where

V0 = H(s = ∞), (5.69)

H0 = V0 − 1. (5.70)

The transfer function results by adding a high-pass filter to a constant. Applying the bilinear
transformation to (5.68) gives

H(z) = 1 + H0

2
[1 + A(z)] (5.71)
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with

A(z) = − z−1 + aB

1 + aBz−1 . (5.72)

For cut, the decomposition can be given by

H(s) = s + ωc

s/V0 + ωc

(5.73)

= 1 + (V0 − 1)︸ ︷︷ ︸
H0

s

s + V0ωc

(5.74)

= 1 + H0

2

[
1 + s − V0ωc

s + V0ωc

]
, (5.75)

which in turn results in (5.71) after a bilinear transformation. The boost and cut parameters
can be calculated as

aB = tan(ωcT /2) − 1

tan(ωcT /2) + 1
, (5.76)

aC = V0tan(ωcT /2) − 1

V0tan(ωcT /2) + 1
. (5.77)

The transfer function of a first-order high-frequency shelving filter can then be written as

H(z) = 1 + (1 − aBC)
H0
2 + (aBC + (aBC − 1)

H0
2 )z−1

1 + aBCz−1 . (5.78)

With A1(z) = −A(z) the signal flow chart in Fig. 5.22 shows a first-order high-pass filter
and a high-frequency shelving filter.

A1(z)x(n) y(n)- H0/2

first-order HF shelving filter

A1(z)x(n) y(n)- 1 /2

first-order high-pass filter

Figure 5.22 First-order high-frequency shelving and high-pass filters.

The implementation of a second-order peak filter can be carried out with a low-pass to
band-pass transformation of a first-order shelving filter. But the addition of a second-order
band-pass filter to a constant branch also results in a peak filter. With the help of an all-pass
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implementation of a band-pass filter as given by

H(z) = 1
2 [1 − A2(z)] (5.79)

and

A2(z) = −aB + (d − daB)z−1 + z−2

1 + (d − daB)z−1 − aBz−2
, (5.80)

a second-order peak filter can be expressed as

H(z) = 1 + H0

2
[1 − A2(z)]. (5.81)

The bandwidth parameters aB and aC for boost and cut are given

aB = tan(ωbT /2) − 1

tan(ωbT /2) + 1
, (5.82)

aC = tan(ωbT /2) − V0

tan(ωbT /2) + V0
. (5.83)

The center frequency parameter d and the coefficient H0 are given by

d = −cos(�c), (5.84)

V0 = H(ej�c), (5.85)

H0 = V0 − 1. (5.86)

The transfer function of a second-order peak filter results in

H(z) = 1 + (1 + aBC)
H0
2 + d(1 − aBC)z−1 + (−aBC − (1 + aBC)

H0
2 )z−2

1 + d(1 − aBC)z−1 − aBCz−2
. (5.87)

The signal flow charts for a second-order peak filter and a second-order band-pass filter are
shown in Fig. 5.23.

A2(z)x(n) y(n)- H0/2

second-order peak filter

A2(z)x(n) y(n)- 1 /2

second-order band-pass filter

Figure 5.23 Second-order peak filter and band-pass filter.

The frequency responses for high-frequency shelving, low-frequency shelving and peak
filters are shown in Figs 5.24, 5.25 and 5.26.
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Figure 5.24 Low-frequency first-order shelving filter (G = ±18 dB, fc = 20, 50, 100, 1000 Hz).
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Figure 5.25 First-order high-frequency shelving filter (G = ±18 dB, fc = 1, 3, 5, 10, 16 kHz).
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Figure 5.26 Second-order peak filter (G = ±18 dB, fc = 50, 100, 1000, 3000, 10000 Hz, fb =
100 Hz).

5.2.3 Quantization Effects

The limited word-length for digital recursive filters leads to two different types of quanti-
zation error. The quantization of the coefficients of a digital filter results in linear distortion
which can be observed as a deviation from the ideal frequency response. The quantization
of the signal inside a filter structure is responsible for the maximum dynamic range and
determines the noise behavior of the filter. Owing to rounding operations in a filter struc-
ture, roundoff noise is produced. Another effect of the signal quantization is limit cycles.
These can be classified as overflow limit cycles, small-scale limit cycles and limit cycles
correlated with the input signal. Limit cycles are very disturbing owing to their small-band
(sinusoidal) nature. The overflow limit cycles can be avoided by suitable scaling of the
input signal. The effects of other errors mentioned above can be reduced by increasing the
word-lengths of the coefficient and the state variables of the filter structure.

The noise behavior and coefficient sensitivity of a filter structure depend on the topol-
ogy and the cutoff frequency (position of the poles in the Z-domain) of the filter. Since
common audio filters operate between 20 Hz and 20 kHz at a sampling rate of 48 kHz,
the filter structures are subjected to specially strict criteria with respect to error behavior.
The frequency range for equalizers is between 20 Hz and 4–6 kHz because the human
voice and many musical instruments have their formants in that frequency region. For
given coefficient and signal word-lengths (as in a digital signal processor), a filter structure
with low roundoff noise for audio application can lead to a suitable solution. For this, the
following second-order filter structures are compared.
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The basis of the following considerations is the relationship between the coefficient
sensitivity and roundoff noise. This was first stated by Fettweis [Fet72]. By increasing the
pole density in a certain region of the z-plane, the coefficient sensitivity and the roundoff
noise of the filter structure are reduced. Owing to these improvements, the coefficient
word-length as well as signal word-length can be reduced. Work in designing digital filters
with minimum word-length for coefficients and state variables was first carried out by
Avenhaus [Ave71].

Typical audio filters like high-/low-pass, peak/shelving filters can be described by the
second-order transfer function

H(z) = a0 + a1z
−1 + a2z

−2

1 + b1z−1 + b2z−2 . (5.88)

The recursive part of the difference equation which can be derived from the transfer func-
tion (5.88) is considered more closely, since it plays a major role in affecting the error
behavior. Owing to the quantization of the coefficients in the denominator in (5.88), the
distribution of poles in the z-plane is restricted (see Fig. 5.27 for 6-bit quantization of
coefficients). The pole distribution in the second quadrant of the z-plane is the mirror image
of the first quadrant. Figure 5.28 shows a block diagram of the recursive part. Another
equivalent representation of the denominator is given by

H(z) = N(z)

1 − 2r cos ϕz−1 + r2z−2 . (5.89)

Here r is the radius and ϕ the corresponding phase of the complex poles. By quantizing
these parameters, the pole distribution is altered, in contrast to the case where b1 and b2 are
quantized as in (5.88).
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Figure 5.27 Direct-form structure – pole distribution (6-bit quantization).
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Figure 5.28 Direct-form structure – block diagram of recursive part.

The state variable structure [Mul76, Bom85] is based on the approach by Gold and
Rader [Gol67], which is given by

H(z) = N(z)

1 − 2Re{z∞}z−1 + (Re{z∞}2 + Im{z∞}2)z−2
. (5.90)

The possible pole locations are shown in Fig. 5.29 for 6-bit quantization (a block diagram
of the recursive part is shown in Fig. 5.30). Owing to the quantization of real and imaginary
parts, a uniform grid of different pole locations results. In contrast to direct quantization of
the coefficients b1 and b2 in the denominator, the quantization of the real and imaginary
parts leads to an increase in the pole density at z = 1. The possible pole locations in the
second quadrant in the z-plane are the mirror images of the ones in the first quadrant.
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Figure 5.29 Gold and Rader – pole distribution (6-bit quantization).

In [Kin72] a filter structure is suggested which has a pole distribution as shown in
Fig. 5.31 (for a block diagram of the recursive part, see Fig. 5.32).
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Figure 5.30 Gold and Rader – block diagram of recursive part.
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Figure 5.31 Kingsbury – pole distribution (6-bit quantization).
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Figure 5.32 Kingsbury – block diagram of recursive part.

The corresponding transfer function,

H(z) = N(z)

1 − (2 − k1k2 − k2
1)z−1 + (1 − k1k2)z−2

, (5.91)
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shows that in this case the coefficients b1 and b2 can be obtained by a linear combination
of the quantized coefficients k1 and k2. The distance d of the pole from the point z = 1
determines the coefficients

k1 = d =
√

1 − 2r cos ϕ + r2, (5.92)

k2 = 1 − r2

k1
, (5.93)

as illustrated in Fig. 5.33.

��^ `

��^ `
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�

Figure 5.33 Geometric interpretation.

The filter structures under consideration showed that by a suitable linear combination
of quantized coefficients, any desired pole distribution can be obtained. An increase of the
pole density at z = 1 can be achieved by influencing the linear relationship between the
coefficient k1 and the distance d from z = 1 [Zöl89, Zöl90]. The nonlinear relationship of
the new coefficients gives the following structure with the transfer function

H(z) = N(z)

1 − (2 − z1z2 − z3
1)z

−1 + (1 − z1z2)z−2
(5.94)

and coefficients

z1 = 3
√

1 + b1 + b2, (5.95)

z2 = 1 − b2

z1
, (5.96)

with
z1 = 3

√
d2. (5.97)

The pole distribution of this structure is shown in Fig. 5.34. The block diagram of the
recursive part is illustrated in Fig. 5.35. The increase in the pole density at z = 1, in contrast
to previous pole distributions is observed. The pole distributions of the Kingsbury and
Zölzer structures show a decrease in the pole density for higher frequencies. For the pole
density, a symmetry with respect to the imaginary axis as in the case of the direct-form
structure and the Gold and Rader structure is not possible. But changing the sign in the
recursive part of the difference equation results in a mirror image of the pole density. The
mirror image can be achieved through a change of sign in the denominator polynomial. The
denominator polynomial

D(z) = 1

!︷︸︸︷± (2 − z1z2 − z3
1)z

−1 + (1 − z1z2)z
−2 (5.98)

shows that the real part depends on the coefficient of z−1.
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Figure 5.34 Zölzer – pole distribution (6-bit quantization).
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Figure 5.35 Zölzer – block diagram of recursive part.

Analytical Comparison of Noise Behavior of Different Filter Structures

In this section, recursive filter structures are analyzed in terms of their noise behavior in
fixed-point arithmetic [Zöl89, Zöl90, Zöl94]. The block diagrams provide the basis for an
analytical calculation of noise power owing to the quantization of state variables. First of
all, the general case is considered in which quantization is performed after multiplication.
For this purpose, the transfer function Gi(z) of every multiplier output to the output of the
filter structure is determined.

For this error analysis it is assumed that the signal within the filter structure covers the
whole dynamic range so that the quantization error ei(n) is not correlated with the signal.
Consecutive quantization error samples are not correlated with each other so that a uniform
power density spectrum results [Sri77]. It can also be assumed that different quantization
errors ei(n) are uncorrelated within the filter structure. Owing to the uniform distribution
of the quantization error, the variance can be given by

σ 2
E = Q2

12
. (5.99)
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The quantization error is added at every point of quantization and is filtered by the cor-
responding transfer function G(z) to the output of the filter. The variance of the output
quantization noise (due to the noise source e(n)) is given by

σ 2
ye = σ 2

E

1

2πj

∮
z=ej�

G(z)G(z−1)z−1 dz. (5.100)

Exact solutions for the ring integral (5.100) can be found in [Jur64] for transfer functions
up to the fourth order. With the L2 norm of a periodic function

‖G‖2 =
[

1

2π

∫ π

−π

|G(ej�)|2 d�

] 1
2

, (5.101)

the superposition of the noise variances leads to the total output noise variance

σ 2
ye = σ 2

E

∑
i

‖Gi‖2
2. (5.102)

The signal-to-noise ratio for a full-range sinusoid can be written as

SNR = 10 log10
0.5

σ 2
ye

dB. (5.103)

The ring integral

In = 1

2πj

∮
z=ej�

A(z)A(z−1)

B(z)B(z−1)
z−1 dz (5.104)

is given in [Jur64] for first-order systems by

G(z) = a0z + a1

b0z + b1
, (5.105)

I1 = (a2
0 + a2

1)b0 − 2a0a1b1

b0(b
2
0 − b2

1)
, (5.106)

and for second-order systems by

G(z) = a0z
2 + a1z + a2

b0z2 + b1z + b2
, (5.107)

I2 = A0b0c1 − A1b0b1 + A2(b
2
1 − b2c1)

b0[(b2
0 − b2

2)c1 − (b0b1 − b1b2)b1]
, (5.108)

A0 = a2
0 + a2

1 + a2
2, (5.109)

A1 = 2(a0a1 + a1a2), (5.110)

A2 = 2a0a2, (5.111)

c1 = b0 + b2. (5.112)

In the following, an analysis of the noise behavior for different recursive filter structures
is presented. The noise transfer functions of individual recursive parts are responsible for
noise shaping.
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Figure 5.36 Direct form with additive error signal.

Table 5.6 Direct form – (a) noise transfer function, (b) quadratic L2 norm and (c) output noise
variance in the case of quantization after every multiplication.

(a) G1(z) = G2(z) = z2

z2 + b1z + b2

(b) ‖G1‖2
2 = ‖G2‖2

2 = 1 + b2

1 − b2

1

(1 + b2)2 − b2
1

(c) σ 2
ye = σ 2

E
2

1 + b2

1 − b2

1

(1 + b2)2 − b2
1

The error transfer function of a second-order direct-form structure (see Fig. 5.36) has
only complex poles (see Table 5.6).

The implementation of poles near the unit circle leads to high amplification of the
quantization error. The effect of the pole radius on the noise variance can be observed in
the equation for output noise variance. The coefficient b2 = r2 approaches 1, which leads
to a huge increase in the output noise variance.

The Gold and Rader filter structure (Fig. 5.37) has an output noise variance that depends
on the pole radius (see Table 5.7) and is independent of the pole phase. The latter fact is
because of the uniform grid of the pole distribution. An additional zero on the real axis
(z = r cos ϕ) directly beneath the poles reduces the effect of the complex poles.

The Kingsbury filter (Fig. 5.38 and Table 5.8) and the Zölzer filter (Fig. 5.39 and
Table 5.9), which is derived from it, show that the noise variance depends on the pole
radius. The noise transfer functions have a zero at z = 1 in addition to the complex poles.
This zero reduces the amplifying effect of the pole near the unit circle at z = 1.

Figure 5.40 shows the signal-to-noise ratio versus the cutoff frequency for the four filter
structures presented above. The signals are quantized to 16 bits. Here, the poles move with
increasing cutoff frequency on the curve characterized by the Q-factor Q∞ = 0.7071 in the
z-plane. For very small cutoff frequencies, the Zölzer filter shows an improvement of 3 dB
in terms of signal-to-noise ratio compared with the Kingsbury filter and an improvement of
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Figure 5.37 Gold and Rader structure with additive error signals.

Table 5.7 Gold and Rader – (a) noise transfer function, (b) quadratic L2 norm and (c) output noise
variance in the case of quantization after every multiplication.

(a)

G1(z) = G2(z)= r sin ϕ

z2 − 2r cos ϕz + r2

G3(z) = G4(z)= z − r cos ϕ

z2 − 2r cos ϕz + r2

(b)

‖G1‖2
2 = ‖G2‖2

2 = 1 + b2

1 − b2

(r sin ϕ)2

(1 + b2)2 − b2
1

‖G3‖2
2 = ‖G4‖2

2 = 1

1 − b2

[1 + (r sin ϕ)2](1 + b2)2 − b2
1

(1 + b2)2 − b2
1

(c) σ 2
ye = σ 2

E
2

1

1 − b2
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Figure 5.38 Kingsbury structure with additive error signals.

6 dB compared with the Gold and Rader filter. Up to 5 kHz, the Zölzer filter yields better
results (see Fig. 5.41). From 6 kHz onwards, the reduction of pole density in this filter leads
to a decrease in the signal-to-noise ratio (see Fig. 5.41).
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Table 5.8 Kingsbury – (a) noise transfer function, (b) quadratic L2 norm and (c) output noise variance
in the case of quantization after every multiplication.

(a)

G1(z)= −k1z

z2 − (2 − k1k2 − k2
1)z + (1 − k1k2)

G2(z)= −k1(z − 1)

z2 − (2 − k1k2 − k2
1)z + (1 − k1k2)

G3(z)= z − 1

z2 − (2 − k1k2 − k2
1)z + (1 − k1k2)

(b)

‖G1‖2
2 = 1

k1k2

2 − k1k2

2(2 − k1k2) − k2
1

‖G2‖2
2 = k1

k2

2

2(2 − k1k2) − k2
1

‖G3‖2
2 = 1

k1k2

2

2(2 − k1k2) − k2
1

(c) σ 2
ye = σ 2

E
2

5 + 2b1 + 3b2

(1 − b2)(1 + b2 − b1)

Table 5.9 Zölzer – (a) noise transfer function, (b) quadratic L2 norm and (c) output noise variance in
the case of quantization after every multiplication.

(a)

G1(z) = −z2
1z

z2 − (2 − z1z2 − z3
1)z + (1 − z1z2)

G2(z) = G3(z) = −z1(z − 1)

z2 − (2 − z1z2 − z3
1)z + (1 − z1z2)

G4(z) = z − 1

z2 − (2 − z1z2 − z3
1)z + (1 − z1z2)

(b)

‖G1‖2
2 = z4

1
z1z2

2 − z1z2

2z3
1(2 − z1z2) − z6

1

‖G2‖2
2 = ‖G3‖2

2 = z6
1

z1z2

2

2z3
1(2 − z1z2) − z6

1

‖G4‖2
2 = z3

1
z1z2

2

2z3
1(2 − z1z2) − z6

1

(c) σ 2
ye = σ 2

E2
6 + 4(b1 + b2) + (1 + b2)(1 + b1 + b2)1/3

(1 − b2)(1 + b2 − b1)
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Figure 5.39 Zölzer structure with additive error signals.
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Figure 5.40 SNR vs. cutoff frequency – quantization of products (fc < 200 Hz).
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Figure 5.41 SNR vs. cutoff frequency – quantization of products (fc > 2 kHz).
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With regard to the implementation of the these filters with digital signal processors, a
quantization after every multiplication is not necessary. Quantization takes place when the
accumulator has to be stored in memory. This can be seen in Figs 5.42–5.45 by introducing
quantizers where they really occur. The resulting output noise variances are also shown.
The signal-to-noise ratio is plotted versus the cutoff frequency in Figs 5.46 and 5.47. In
the case of direct-form and Gold and Rader filters, the signal-to-noise ratio increases by
3 dB whereas the output noise variance for the Kingsbury filter remains unchanged. The
Kingsbury filter and the Gold and Rader filters exhibit similar results up to a frequency of
200 kHz (see Fig. 5.46). The Zölzer filter demonstrates an improvement of 3 dB compared
with these structures. For frequencies of up to 2 kHz (see Fig. 5.47) it is seen that the
increased pole density leads to an improvement of the signal-to-noise ratio as well as a
reduced effect due to coefficient quantization.
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Figure 5.42 Direct-form filter – quantization after accumulator.
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Figure 5.43 Gold and Rader filter – quantization after accumulator.
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Figure 5.44 Kingsbury filter – quantization after accumulator.
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Figure 5.45 Zölzer filter – quantization after accumulator.
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Figure 5.46 SNR vs. cutoff frequency – quantization after accumulator (fc < 200 Hz).

Noise Shaping in Recursive Filters

The analysis of the noise transfer function of different structures shows that for three
structures with low roundoff noise a zero at z = 1 occurs in the transfer functions G(z)



5.2 Recursive Audio Filters 151

Zölzer
Kingsbury

60

70

80

90

100

2k 6k 12k
50

4k 8k 10k

Gold and Rader

Direct-form

SNR/dB

f/Hz

Figure 5.47 SNR vs. cutoff frequency – quantization after accumulator (fc > 2 kHz).

of the error signals in addition to the complex poles. This zero near the poles reduces
the amplifying effect of the pole. If it is now possible to introduce another zero into the
noise transfer function then the effect of the poles is compensated for to a larger extent.
The procedure of feeding back the quantization error as shown in Chapter 2 produces an
additional zero in the noise transfer function [Tra77, Cha78, Abu79, Bar82, Zöl89]. The
feedback of the quantization error is first demonstrated with the help of the direct-form
structure as shown in Fig. 5.48. This generates a zero at z = 1 in the noise transfer function
given by

G1.O(z) = 1 − z−1

1 + b1z−1 + b2z−2
. (5.113)

The resulting variance σ 2 of the quantization error at the output of the filter is presented
in Fig. 5.48. In order to produce two zeros at z = 1, the quantization error is fed back
over two delays weighted 2 and −1 (see Fig. 5.48b). The noise transfer function is, hence,
given by

G2.O(z) = 1 − 2z−1 + z−2

1 + b1z−1 + b2z−2 . (5.114)

The signal-to-noise ratio of the direct-form is plotted versus the cutoff frequency in
Fig. 5.49. Even a single zero significantly improves the signal-to-noise ratio in the direct
form. The coefficients b1 and b2 approach −2 and 1 respectively with the decrease of
the cutoff frequency. With this, the error is filtered with a second-order high-pass. The
introduction of the additional zeros in the noise transfer function only affects the noise
signal of the filter. The input signal is only affected by the transfer function H(z). If the
feedback coefficients are chosen equal to the coefficients b1 and b2 in the denominator
polynomial, complex zeros are produced that are identical to the complex poles. The noise
transfer function G(z) is then reduced to unity. The choice of complex zeros directly at the
location of the complex poles corresponds to double-precision arithmetic.

In [Abu79] an improvement of noise behavior for the direct form in any desired location
of the z-plane is achieved by placing additional simple-to-implement complex zeros near
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Figure 5.48 Direct form with noise shaping.
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Figure 5.49 SNR – Noise shaping in direct-form filter structures.

the poles. For implementing filter algorithms with digital signal processors, these kinds of
suboptimal zero are easily realized. Since the Gold and Rader, Kingsbury, and Zölzer filter
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structures already have zeros in their respective noise transfer functions, it is sufficient to
use a simple feedback for the quantization error. By virtue of this extension, the block
diagrams in Figs 5.50, 5.51 and 5.52 are obtained.
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Figure 5.50 Gold and Rader filter with noise shaping.
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Figure 5.51 Kingsbury filter with noise shaping.

The effect of noise shaping on signal-to-noise ratio is shown in Figs 5.53 and 5.54. The
almost ideal noise behavior of all filter structures for 16-bit quantization and very small
cutoff frequencies can be observed. The effect of this noise shaping for increasing cutoff
frequencies is shown in Fig. 5.54. The compensating effect of the two zeros at z = 1 is
reduced.
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Figure 5.52 Zölzer filter with noise shaping.
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Figure 5.53 SNR – noise shaping (20–200 Hz).

Scaling

In a fixed-point implementation of a digital filter, a transfer function from the input of the
filter to a junction within the filter has to be determined, as well as the transfer function
from the input to the output. By scaling the input signal, it has to be guaranteed that the
signals remain within the number range at each junction and at the output.

In order to calculate scaling coefficients, different criteria can be used. The Lp norm is
defined as

Lp = ‖H‖p =
[

1

2π

∫ π

−π

|H(ej�)|p d�

]1/p

, (5.115)

and an expression for the L∞ norm follows for p = ∞:

L∞ = ‖H(ej�)‖∞ = max
0≤�≤π

|H(ej�)|. (5.116)



5.2 Recursive Audio Filters 155

200 12k

Direct form
(double zero at z=1)

60

70

80

90

100

50

Kingsbury
Zölzer

Gold and Rader

SNR/dB

f/Hz

Figure 5.54 SNR – noise shaping (200–12000 Hz).

The L∞ norm represents the maximum of the amplitude frequency response. In general,
the modulus of the output is

|y(n)| ≤ ‖H‖p‖X‖q (5.117)

with
1

p
+ 1

q
= 1, p, q ≥ 1. (5.118)

For the L1, L2 and L∞ norms the explanations in Table 5.10 can be used.

Table 5.10 Commonly used scaling.

p q

1 ∞ Given max. value of input spectrum

scaling w.r.t. the L1 norm of H(ej�)

∞ 1 Given L1 norm of input spectrum X(ej�)

scaling w.r.t. the L∞ norm of H(ej�)

2 2 Given L2 norm of input spectrum X(ej�)

scaling w.r.t. the L2 norm of H(ej�)

With

|yi(n)| ≤ ‖Hi(e
j�)‖∞‖X(ej�)‖1, (5.119)

the L∞ norm is given by

L∞ = ‖hi‖∞ = ∞
max
k=0

|hi(k)|. (5.120)
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For a sinusoidal input signal of amplitude 1 we get ‖X(ej�)‖1 = 1. For |yi(n)| ≤ 1 to be
valid, the scaling factor must be chosen as

Si = 1

‖Hi(ej�)‖∞
. (5.121)

The scaling of the input signal is carried out with the maximum of the amplitude frequency
response with the goal that for |x(n)| ≤ 1, |yi(n)| ≤ 1. As a scaling coefficient for the input
signal the highest scaling factor Si is chosen. To determine the maximum of the transfer
function

‖H(ej�)‖∞ = max
0≤�≤π

|H(ej�)| (5.122)

of a second-order system

H(z) = a0 + a1z
−1 + a2z

−1

1 + b1z−1 + b2z−1
= a0z

2 + a1z + a2

z2 + b1z + b2
,

the maximum value can be calculated as

|H(ej�)|2 =

α0︷ ︸︸ ︷
a0a2

b2
cos2(�) +

α1︷ ︸︸ ︷
a1(a0 + a2)

2b2
cos(�) +

α2︷ ︸︸ ︷
(a0 − a2)

2 + a2
1

4b2

cos2(�) + b1(1 + b2)

2b2︸ ︷︷ ︸
β1

cos(�) + (1 − b2)
2 + b2

1

4b2︸ ︷︷ ︸
β2

= S2. (5.123)

With x = cos(�) it follows that

(S2 − α0)x
2 + (β1S

2 − α1)x + (β2S
2 − α2) = 0. (5.124)

The solution of (5.124) leads to x = cos(�max / min) which must be real (−1 ≤ x ≤ 1) for
the maximum/minimum to occur at a real frequency. For a single solution (repeated roots)
of the above quadratic equation, the discriminant must be D = (p/2)2 − q = 0 (x2 + px +
q = 0). It follows that

D = (β1S
2 − α1)

2

4(S2 − α0)2
− β2S

2 − α2

S2 − α0
= 0 (5.125)

and
S4(β2

1 − 4β2) + S2(4α2 + 4α0β2 − 2α1β1) + (α2
1 − 4α0α2) = 0. (5.126)

The solution of (5.126) gives two solutions for S2. The solution with the larger value is
chosen. If the discriminant D is not greater than zero, the maximum lies at x = 1 (z = 1)

or x = −1 (z = −1) as given by

S2 = α0 + α1 + α2

1 + β1 + β2
(5.127)

or

S2 = α0 − α1 + α2

1 − β1 + β2
. (5.128)
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Limit Cycles

Limit cycles are periodic processes in a filter which can be measured as sinusoidal signals.
They arise owing to the quantization of state variables. The different types of limit cycle
and the methods necessary to prevent them are briefly listed below:

• overflow limit cycles

→ saturation curve

→ scaling

• limit cycles for vanishing input

→ noise shaping

→ dithering

• limit cycles correlated with the input signal

→ noise shaping

→ dithering.

5.3 Nonrecursive Audio Filters

To implement linear phase audio filters, nonrecursive filters are used. The basis of an
efficient implementation is the fast convolution

y(n) = x(n) ∗ h(n) ◦—• Y (k) = X(k) · H(k), (5.129)

where the convolution in the time domain is performed by transforming the signal and
the impulse response into the frequency domain, multiplying the corresponding Fourier
transforms and inverse Fourier transform of the product into the time domain signal (see
Fig. 5.55). The transform is carried out by a discrete Fourier transform of length N , such
that N = N1 + N2 − 1 is valid and time-domain aliasing is avoided. First we discuss the
basics. We then introduce the convolution of long sequences followed by a filter design for
linear phase filters.

x(n)

0

0

h(n) N-FFT

N-FFT X(k)

H(k)

y(n)=IFFT[X(k).H(k)]y(n)=x(n)*h(n)

N1

N2

N

Figure 5.55 Fast convolution of signal x(n) of length N1 and impulse response h(n) of length N2
delivers the convolution result y(n) = x(n) ∗ h(n) of length N1 + N2 − 1.
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5.3.1 Basics of Fast Convolution

IDFT Implementation with DFT Algorithm. The discrete Fourier transformation (DFT)
is described by

X(k) =
N−1∑
n=0

x(n)W nk
N = DFTk[x(n)], (5.130)

WN = e−j2π/N, (5.131)

and the inverse discrete Fourier transformation (IDFT) by

x(n) = 1

N

N−1∑
k=0

X(k)W−nk
N . (5.132)

Suppressing the scaling factor 1/N , we write

x ′(n) =
N−1∑
k=0

X(k)W−nk
N = IDFTn[X(k)], (5.133)

so that the following symmetrical transformation algorithms hold:

X′(k) = 1√
N

N−1∑
n=0

x(n)W nk
N , (5.134)

x(n) = 1√
N

N−1∑
k=0

X′(k)W−nk
N . (5.135)

The IDFT differs from the DFT only by the sign in the exponential term.
An alternative approach for calculating the IDFT with the help of a DFT is described

as follows [Cad87, Duh88]. We will make use of the relationships

x(n) = a(n) + j · b(n), (5.136)

j · x∗(n) = b(n) + j · a(n). (5.137)

Conjugating (5.133) gives

x ′∗(n) =
N−1∑
k=0

X∗(k)W nk
N . (5.138)

The multiplication of (5.138) by j leads to

j · x ′∗(n) =
N−1∑
k=0

j · X∗(k)W nk
N . (5.139)

Conjugating and multiplying (5.139) by j results in

x ′(n) = j ·
[ N−1∑

k=0

(j · X∗(k)W nk
N

]∗
. (5.140)

An interpretation of (5.137) and (5.140) suggests the following way of performing the IDFT
with the DFT algorithm:
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1. Exchange the real with the imaginary part of the spectral sequence

Y (k) = YI (k) + jYR(k).

2. Transform with DFT algorithm

DFT[Y (k)] = yI (n) + jyR(n).

3. Exchange the real with the imaginary part of the time sequence

y(n) = yR(n) + jyI (n).

For implementation on a digital signal processor, the use of DFT saves memory for IDFT.

Discrete Fourier Transformation of Two Real Sequences. In many applications, stereo
signals that consist of a left and right channel are processed. With the help of the DFT, both
channels can be transformed simultaneously into the frequency domain [Sor87, Ell82].

For a real sequence x(n) we obtain

X(k) = X∗(−k), k = 0, 1, . . . , N − 1 (5.141)

= X∗(N − k). (5.142)

For a discrete Fourier transformation of two real sequences x(n) and y(n), a complex
sequence is first formed according to

z(n) = x(n) + jy(n). (5.143)

The Fourier transformation gives

DFT[z(n)] = DFT[x(n) + jy(n)]
= ZR(k) + jZI (k) (5.144)

= Z(k), (5.145)

where

Z(k) = ZR(k) + jZI (k) (5.146)

= XR(k) + jXI (k) + j [YR(k) + jYI (k)] (5.147)

= XR(k) − YI (k) + j [XI(k) + YR(k)]. (5.148)

Since x(n) and y(n) are real sequences, it follows from (5.142) that

Z(N − k) = ZR(N − k) + jZI (N − k) = Z∗(k) (5.149)

= XR(k) − jXI (k) + j [YR(k) − jYI (k)] (5.150)

= XR(k) + YI (k) − j [XI(k) − YR(k)]. (5.151)

Considering the real part of Z(k), adding (5.148) and (5.151) gives

2XR(k) = ZR(k) + ZR(N − k) (5.152)

→ XR(k) = 1
2 [ZR(k) + ZR(N − k)], (5.153)
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and subtraction of (5.151) from (5.148) results in

2YI (k) = ZR(N − k) − ZR(k) (5.154)

→ YI (k) = 1
2 [ZR(N − k) − ZR(k)]. (5.155)

Considering the imaginary part of Z(k), adding (5.148) and (5.151) gives

2YR(k) = ZI(k) + ZI(N − k) (5.156)

→ YR(k) = 1
2 [ZI(k) + ZI (N − k)], (5.157)

and subtraction of (5.151) from (5.148) results in

2XI(k) = ZI (k) − ZI (N − k) (5.158)

→ XI (k) = 1
2 [ZI(k) − ZI(N − k)]. (5.159)

Hence, the spectral functions are given by

X(k) = DFT[x(n)] = XR(k) + jXI (k) (5.160)

= 1

2
[ZR(k) + ZR(N − k)]

+ j
1

2
[ZI(k) − ZI(N − k)], k = 0, 1, . . . ,

N

2
, (5.161)

Y (k) = DFT[y(n)] = YR(k) + jYR(k) (5.162)

= 1

2
[ZI(k) + ZI (N − k)]

+ j
1

2
[ZR(N − k) − ZR(k)], k = 0, 1, . . . ,

N

2
, (5.163)

and

XR(k) + jXI (k) = XR(N − k) − jXI (N − k) (5.164)

YR(k) + jYI (k) = YR(N − k) − jYI (N − k), k = N

2
+ 1, . . . , N − 1. (5.165)

Fast Convolution if Spectral Functions are Known. The spectral functions X(k), Y (k)

and H(k) are known. With the help of (5.148), the spectral sequence can be formed by

Z(k) = ZR(k) + jZI (k) (5.166)

= XR(k) − YI (k) + j [XI (k) + YR(k)], k = 0, 1, . . . , N − 1. (5.167)

Filtering is done by multiplication in the frequency domain:

Z′(k) = [ZR(k) + jZI (k)][HR(k) + jHI (k)]
= ZR(k)HR(k) − ZI (k)HI (k) + j [ZR(k)HI (k) + ZI(k)HR(k)]. (5.168)

The inverse transformation gives

z′(n) = [x(n) + jy(n)] ∗ h(n) = x(n) ∗ h(n) + jy(n) ∗ h(n) (5.169)

= IDFT[Z′(k)]
= z′

R(n) + jz′
I (n), (5.170)
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so that the filtered output sequence is given by

x ′(n) = z′
R(n), (5.171)

y ′(n) = z′
I (n). (5.172)

The filtering of a stereo signal can hence be done by transformation into the frequency
domain, multiplication of the spectral functions and inverse transformation of left and right
channels.

5.3.2 Fast Convolution of Long Sequences

The fast convolution of two real input sequences xl(n) and xl+1(n) of length N1 with the
impulse response h(n) of length N2 leads to the output sequences

yl(n) = xl(n) ∗ h(n), (5.173)

yl+1(n) = xl+1(n) ∗ h(n), (5.174)

of length N1 + N2 − 1. The implementation of a nonrecursive filter with fast convolution
becomes more efficient than the direct implementation of an FIR filter for filter lengths
N > 30. Therefore the following procedure will be performed:

• Formation of a complex sequence

z(n) = xl(n) + jxl+1(n). (5.175)

• Fourier transformation of the impulse response h(n) that is padded with zeros to a
length N ≥ N1 + N2 − 1,

H(k) = DFT[h(n)] (FFT-length N). (5.176)

• Fourier transformation of the sequence z(n) that is padded with zeros to a length
N ≥ N1 + N2 − 1,

Z(k) = DFT[z(n)] (FFT-length N). (5.177)

• Formation of a complex output sequence

e(n) = IDFT[Z(k)H(k)] (5.178)

= z(n) ∗ h(n) (5.179)

= xl(n) ∗ h(n) + jxl+1(n) ∗ h(n). (5.180)

• Formation of a real output sequence

yl(n) = Re{e(n)}, (5.181)

yl+1(n) = Im{e(n)}. (5.182)
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x (n)l+1x (n)l x (n)l+2

h(n)

y (n)=xl l(n)*h(n)

y (n)=xl+1 l+1(n)*h(n)

y(n)

y (n)=xl+2 l+2(n)*h(n)

Figure 5.56 Fast convolution with partitioning of the input signal x(n) into blocks of length L.

For the convolution of an infinite-length input sequence (see Fig. 5.56) with an impulse
response h(n), the input sequence is partitioned into sequences xm(n) of length L:

xm(n) =
{
x(n), (m − 1)L ≤ n ≤ mL − 1,

0, otherwise.
(5.183)

The input sequence is given by superposition of finite-length sequences according to

x(n) =
∞∑

m=1

xm(n). (5.184)

The convolution of the input sequence with the impulse response h(n) of length M gives

y(n) =
M−1∑
k=0

h(k)x(n − k) (5.185)

=
M−1∑
k=0

h(k)

∞∑
m=1

xm(n − k) (5.186)

=
∞∑

m=1

[ M−1∑
k=0

h(k)xm(n − k)

]
. (5.187)

The term in brackets corresponds to the convolution of a finite-length sequence xm(n)

of length L with the impulse response of length M . The output signal can be given as
superposition of convolution products of length L + M − 1. With these partial convolution
products

ym(n) =




M−1∑
k=0

h(k)xm(n − k), (m − 1)L ≤ n ≤ mL + M − 2,

0, otherwise,

(5.188)

the output signal can be written as

y(n) =
∞∑

m=1

ym(n). (5.189)
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h (n)1 h (n)2 h (n)P

Figure 5.57 Partitioning of the impulse response h(n).

If the length M of the impulse response is very long, it can be similarly partitioned into
P parts each of length M/P (see Fig. 5.57). With

hp

(
n − (p − 1)

M

P

)
=
{

h(n), (p − 1)
M

P
≤ n ≤ p

M

P
− 1,

0, otherwise,
(5.190)

it follows that

h(n) =
P∑

p=1

hp

(
n − (p − 1)

M

P

)
. (5.191)

With Mp = pM/P and (5.189) the following partitioning can be done:

y(n) =
∞∑

m=1

[M−1∑
k=0

h(k)xm(n − k)

︸ ︷︷ ︸
ym(n)

]
(5.192)

=
∞∑

m=1

[M1−1∑
k=0

h(k)xm(n − k) +
M2−1∑
k=M1

h(k)xm(n − k) + · · · +
M−1∑

k=MP−1

h(k)xm(n − k)

]
.

(5.193)

This can be rewritten as

y(n) =
∞∑

m=1

[ M1−1∑
k=0

h1(k)xm(n − k)

︸ ︷︷ ︸
ym1

+
M1−1∑
k=0

h2(k)xm(n − M1 − k)

︸ ︷︷ ︸
ym2

+
M1−1∑
k=0

h3(k)xm(n − 2M1 − k)

︸ ︷︷ ︸
ym3

+ · · · +
M1−1∑
k=0

hP (k)xm(n − (P − 1)M1 − k)

︸ ︷︷ ︸
ymP

]

=
∞∑

m=1

[ym1(n) + ym2(n − M1) + · · · + ymP (n − (P − 1)M1)︸ ︷︷ ︸
ym(n)

]. (5.194)
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An example of partitioning the impulse response into P = 4 parts is graphically shown in
Fig. 5.58. This leads to

y(n) =
∞∑

m=1

[ M1−1∑
k=0

h1(k)xm(n − k)

︸ ︷︷ ︸
ym1

+
M1−1∑
k=0

h2(k)xm(n − M1 − k)

︸ ︷︷ ︸
ym2

+
M1−1∑
k=0

h3(k)xm(n − 2M1 − k)

︸ ︷︷ ︸
ym3

+
M1−1∑
k=0

h4(k)xm(n − 3M1 − k)

︸ ︷︷ ︸
ym4

]

=
∞∑

m=1

[ym1(n) + ym2(n − M1) + ym3(n − 2M1) + ym4(n − 3M1)︸ ︷︷ ︸
ym(n)

]. (5.195)

'2c��

'2c��

'2c�2

'2c�<

'<c��

'<c��

'<c�2

'<c�<

'�c��

'�c�2

'�c�<

'�c��

'�c��

'�c�2

'�c�<

'5c��

'5c��

'5c�2

'5c�<

'>c��

'� '� '2 '< '5 '>

'�c��

"� "� "2 "< "5 ">

Figure 5.58 Scheme for a fast convolution with P = 4.

The procedure of a fast convolution by partitioning the input sequence x(n) as well as the
impulse response h(n) is given in the following for the example in Fig. 5.58.
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1. Decomposition of the impulse response h(n) of length 4M:

h1(n) = h(n) 0 ≤ n ≤ M − 1, (5.196)

h2(n − M) = h(n) M ≤ n ≤ 2M − 1, (5.197)

h3(n − 2M) = h(n) 2M ≤ n ≤ 3M − 1, (5.198)

h4(n − 3M) = h(n) 3M ≤ n ≤ 4M − 1. (5.199)

2. Zero-padding of partial impulse responses up to a length 2M:

h1(n) =
{
h1(n), 0 ≤ n ≤ M − 1,

0, M ≤ n ≤ 2M − 1,
(5.200)

h2(n) =
{

h2(n), 0 ≤ n ≤ M − 1,

0, M ≤ n ≤ 2M − 1,
(5.201)

h3(n) =
{

h3(n), 0 ≤ n ≤ M − 1,

0, M ≤ n ≤ 2M − 1,
(5.202)

h4(n) =
{

h4(n), 0 ≤ n ≤ M − 1,

0, M ≤ n ≤ 2M − 1.
(5.203)

3. Calculating and storing

Hi(k) = DFT[hi(n)], i = 1, . . . , 4 (FFT-length 2M). (5.204)

4. Decomposition of the input sequence x(n) into partial sequences xl(n) of length M:

xl(n) = x(n), (l − 1)M ≤ n ≤ lM − 1, l = 1, . . . , ∞. (5.205)

5. Nesting partial sequences:

zm(n) = xl(n) + jxl+1(n), m = 1, . . . , ∞. (5.206)

6. Zero-padding of complex sequence zm(n) up to a length 2M:

zm(n) =
{
zm(n), (l − 1)M ≤ n ≤ lM − 1,

0, lM ≤ n ≤ (l + 1)M − 1.
(5.207)

7. Fourier transformation of the complex sequences zm(n):

Zm(k) = DFT[zm(n)] = ZmR(k) + jZmI (k) (FFT-length 2M). (5.208)

8. Multiplication in the frequency domain:

[ZR(k) + jZI (k)][HR(k) + jHI (k)] = ZR(k)HR(k) − ZI(k)HI (k)

+ j [ZR(k)HI (k) + ZI (k)HR(k)], (5.209)

Em1(k) = Zm(k)H1(k) k = 0, 1, . . . , 2M − 1, (5.210)

Em2(k) = Zm(k)H2(k) k = 0, 1, . . . , 2M − 1, (5.211)

Em3(k) = Zm(k)H3(k) k = 0, 1, . . . , 2M − 1, (5.212)

Em4(k) = Zm(k)H4(k) k = 0, 1, . . . , 2M − 1. (5.213)
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9. Inverse transformation:

em1(n) = IDFT[Zm(k)H1(k)] n = 0, 1, . . . , 2M − 1, (5.214)

em2(n) = IDFT[Zm(k)H2(k)] n = 0, 1, . . . , 2M − 1, (5.215)

em3(n) = IDFT[Zm(k)H3(k)] n = 0, 1, . . . , 2M − 1, (5.216)

em4(n) = IDFT[Zm(k)H4(k)] n = 0, 1, . . . , 2M − 1. (5.217)

10. Determination of partial convolutions:

Re{em1(n)} = xl ∗ h1, (5.218)

Im{em1(n)} = xl+1 ∗ h1, (5.219)

Re{em2(n)} = xl ∗ h2, (5.220)

Im{em2(n)} = xl+1 ∗ h2, (5.221)

Re{em3(n)} = xl ∗ h3, (5.222)

Im{em3(n)} = xl+1 ∗ h3, (5.223)

Re{em4(n)} = xl ∗ h4, (5.224)

Im{em4(n)} = xl+1 ∗ h4. (5.225)

11. Overlap-add of partial sequences, increment l = l + 2 and m = m + 1, and back to
step 5.

Based on the partitioning of the input signal and the impulse response and the following
Fourier transform, the result of each single convolution is only available after a delay of
one block of samples. Different methods to reduce computational complexity or overcome
the block delay have been proposed [Soo90, Gar95, Ege96, Mül99, Mül01, Garc02]. These
methods make use of a hybrid approach where the first part of the impulse response is used
for time-domain convolution and the other parts are used for fast convolution in the fre-
quency domain. Figure 5.59a,b demonstrates a simple derivation of the hybrid convolution
scheme, which can be described by the decomposition of the transfer function as

H(z) =
M−1∑
i=0

z−iNHi(z), (5.226)

where the impulse response has length M · N and M is the number of smaller partitions
of length N . Figure 5.59c,d shows two different signal flow graphs for the decomposition
given by (5.226) of the entire transfer function. In particular, Fig. 5.59d highlights (with
gray background) that in each branch i = 1, . . . , M − 1 a delay of i · N occurs and each
filter Hi(z) has the same length and makes use of the same state variables. This means
that they can be computed in parallel in the frequency domain with 2N-FFTs/IFFTs and
the outputs have to be delayed according to (i − 1) · N , as shown in Fig. 5.59e. A further
simplification shown in Fig. 5.59f leads to one input 2N-FFT and block delays z−1 for
the frequency vectors. Then, parallel multiplications with Hi(k) of length 2N and the
summation of all intermediate products are performed before one output 2N-IFFT for the
overlap-add operation in the time domain is used. The first part of the impulse response
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represented by H0(z) is performed by direct convolution in the time domain. The frequency
and time domain parts are then overlapped and added. An alternative realization for fast
convolution is based on the overlap and save operation.
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Figure 5.59 Hybrid fast convolution.

5.3.3 Filter Design by Frequency Sampling

Audio filter design for nonrecursive filter realizations by fast convolution can be carried out
by the frequency sampling method. For linear phase systems we obtain

H(ej�) = A(ej�) e−j (NF −1/2)�, (5.227)

where A(ej�) is a real-valued amplitude response and NF is the length of the impulse
response. The magnitude |H(ej�)| is calculated by sampling in the frequency domain at
equidistant places

f

fS

= k

NF

, k = 0, 1, . . . , NF − 1, (5.228)

according to

|H(ej�)| = A(ej2πk/NF ), k = 0, 1, . . . ,
NF

2
− 1. (5.229)
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Hence, a filter can be designed by fulfilling conditions in the frequency domain. The linear
phase is determined as

e−j
NF −1

2 � = e−j2π(NF −1/2)k/NF (5.230)

= cos

(
2π

NF − 1

2

k

NF

)
− j sin

(
2π

NF − 1

2

k

NF

)
, (5.231)

k = 0, 1, . . . ,
NF

2
− 1.

Owing to the real transfer function H(z) for an even filter length, we have to fulfill

H

(
k = NF

2

)
= 0 ∧ H(k) = H ∗(NF − k), k = 0, 1, . . . ,

NF

2
− 1. (5.232)

This has to be taken into consideration while designing filters of even length NF . The
impulse response h(n) is obtained through an NF -point IDFT of the spectral sequence
H(k). This impulse response is extended with zero-padding to the length N and then
transformed by an N-point DFT resulting in the spectral sequence H(k) of the filter.

Example: For NF = 8, |H(k)| = 1 (k = 0, 1, 2, . . . , 7) and |H(4)| = 0, the group delay
is tG = 3.5. Figure 5.60 shows the amplitude, real part and imaginary part of the transfer
function and the impulse response h(n).

5.4 Multi-complementary Filter Bank

The subband processing of audio signals is mainly used in source coding applications for
efficient transmission and storing. The basis for the subband decomposition is critically
sampled filter banks [Vai93, Fli00]. These filter banks allow a perfect reconstruction of
the input provided there is no processing within the subbands. They consist of an analysis
filter bank for decomposing the signal in critically sampled subbands and a synthesis filter
bank for reconstructing the broad-band output. The aliasing in the subbands is eliminated
by the synthesis filter bank. Nonlinear methods are used for coding the subband signals.
The reconstruction error of the filter bank is negligible compared with the errors due to the
coding/decoding process. Using a critically sampled filter bank as a multi-band equalizer,
multi-band dynamic range control or multi-band room simulation, the processing in the
subbands leads to aliasing at the output. In order to avoid aliasing, a multi-complementary
filter bank [Fli92, Zöl92, Fli00] is presented which enables an aliasing-free processing in
the subbands and leads to a perfect reconstruction of the output. It allows a decomposition
into octave frequency bands which are matched to the human ear.

5.4.1 Principles

Figure 5.61 shows an octave-band filter bank with critical sampling. It performs a suc-
cessive low-pass/high-pass decomposition into half-bands followed by downsampling by a
factor 2. The decomposition leads to the subbands Y1 to YN (see Fig. 5.62). The transition
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Figure 5.60 Filter design by frequency sampling (NF even).

frequencies of this decomposition are given by

�Ck = π

2
2−k+1, k = 1, 2, . . . , N − 1. (5.233)

In order to avoid aliasing in subbands, a modified octave-band filter bank is considered
which is shown in Fig. 5.63 for a two-band decomposition. The cutoff frequency of the
modified filter bank is moved from π

2 to a lower frequency. This means that in downsam-
pling the low-pass branch, no aliasing occurs in the transition band (e.g. cutoff frequency
π
3 ). The broader high-pass branch cannot be downsampled. A continuation of the two-band
decomposition described leads to the modified octave-band filter bank shown in Fig. 5.64.
The frequency bands are depicted in Fig. 5.65 showing that besides the cutoff frequencies

�Ck = π

3
2−k+1, k = 1, 2, . . . , N − 1, (5.234)

the bandwidth of the subbands is reduced by a factor 2. The high-pass subband Y1 is an
exception.

The special low-pass/high-pass decomposition is carried out by a two-band comple-
mentary filter bank as shown in Fig. 5.66. The frequency responses of a decimation filter
HD(z), interpolation filter HI(z) and kernel filter HK(z) are shown in Fig. 5.67.
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Figure 5.61 Octave-band QMF filter bank (SP = signal processing, LP = low-pass, HP = high-pass).
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Figure 5.64 Modified octave-band filter bank.

The low-pass filtering of a signal x1(n) is done with the help of a decimation filter
HD(z), the downsampler of factor 2 and the kernel filter HK(z) and leads to y2(2n). The
Z-transform of y2(2n) is given by

Y2(z) = 1
2 [HD(z

1
2 )X1(z

1
2 )HK(z) + HD(−z

1
2 )X1(−z

1
2 )HK(z)]. (5.235)
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Figure 5.67 Design of HD(z), HI (z) and HK(z).

The interpolated low-pass signal y1L(n) is generated by upsampling by a factor 2 and
filtering with the interpolation filter HI (z). The Z-transform of y1L(n) is given by

Y1L(z) = Y2(z
2)HI (z) (5.236)

= 1
2HD(z)HI (z)HK(z2)︸ ︷︷ ︸

G1(z)

X1(z) + 1
2HD(−z)HI (z)HK(z2)︸ ︷︷ ︸

G2(z)

X1(−z).

(5.237)

The high-pass signal y1(n) is obtained by subtracting the interpolated low-pass signal
y1L(n) from the delayed input signal x1(n − D). The Z-transform of the high-pass signal
is given by

Y1(z) = z−DX1(z) − Y1L(z) (5.238)

= [z−D − G1(z)]X1(z) − G2(z)X1(−z). (5.239)

The low-pass and high-pass signals are processed individually. The output signal x̂1(n)

is formed by adding the high-pass signal to the upsampled and filtered low-pass signal.
With (5.237) and (5.239) the Z-transform of x̂1(n) can be written as

X̂1(z) = Y1L(z) + Y1(z) = z−DX1(z). (5.240)

Equation (5.240) shows the perfect reconstruction of the input signal which is delayed by
D sampling units.
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The extension to N subbands and performing the kernel filter using complementary
techniques [Ram88, Ram90] leads to the multi-complementary filter bank as shown in
Fig. 5.68. Delays are integrated in the high-pass (Y1) and band-pass subbands (Y2 to YN−2)
in order to compensate the group delay. The filter structure consists of N horizontal stages.
The kernel filter is implemented as a complementary filter in S vertical stages. The design
of the latter will be discussed later. The vertical delays in the extended kernel filters (EKF1
to EKFN−1) compensate group delays caused by forming the complementary component.
At the end of each of these vertical stages is the kernel filter HK . With

zk = z2−(k−1)

and k = 1, . . . , N, (5.241)

the signals X̂k(zk) can be written as a function of the signals Xk(zk) as

X̂ = diag [z−D1
1 z

−D2
2 . . . z

−DN

N ]X, (5.242)

with
X̂ = [X̂1(z1) X̂2(z2) . . . X̂N (zN)]T ,

X = [X1(z1) X2(z2) . . . XN(zN)]T ,

and with k = N − l the delays are given by

Dk=N = 0, (5.243)

Dk=N−l = 2DN−l+1 + D, l = 1, . . . , N − 1. (5.244)

Perfect reconstruction of the input signal can be achieved if the horizontal delays DHk are
given by

DHk=N = 0,

DHk=N−1 = 0,

DHk=N−l = 2DN−l+1, l = 2, . . . , N − 1.

The implementation of the extended vertical kernel filters is done by calculating com-
plementary components as shown in Fig. 5.69. After upsampling, interpolating with a
high-pass HP (Fig. 5.69b) and forming the complementary component, the kernel filter
HK with frequency response as in Fig. 5.69a becomes low-pass with frequency response
as illustrated in Fig. 5.69c. The slope of the filter characteristic remains constant whereas
the cutoff frequency is doubled. A subsequent upsampling with an interpolation high-pass
(Fig. 5.69d) and complement filtering leads to the frequency response in Fig. 5.69e. With
the help of this technique, the kernel filter is implemented at a reduced sampling rate. The
cutoff frequency is moved to a desired cutoff frequency by using decimation/interpolation
stages with complement filtering.

Computational Complexity. For an N-band multi-complementary filter bank with N −
1 decomposition filters where each is implemented by a kernel filter with S stages, the
horizontal complexity is given by

HC = HC1 + HC2

(
1

2
+ 1

4
+ · · · + 1

2N

)
. (5.245)
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Figure 5.68 Multi-complementary filter bank.

HC1 denotes the number of operations that are carried out at the input sampling rate. These
operations occur in the horizontal stage HS1 (see Fig. 5.68). HC2 denotes the number
of operations (horizontal stage HS2) that are performed at half of the sampling rate. The
number of operations in the stages from HS2 to HSN are approximately identical but are
calculated at sampling rates that are successively halved.

The complexities VC1 to VCN−1 of the vertical kernel filters EKF1 to EKFN−1 are
calculated as

VC1 = 1

2
V1 + V2

(
1

4
+ 1

8
+ · · · + 1

2S+1

)
,

VC2 = 1

4
V1 + V2

(
1

8
+ 1

16
+ · · · + 1

2S+2

)
= 1

2
VC1,
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Figure 5.69 Multirate complementary filter.

VC3 = 1

8
V1 + V2

(
1

16
+ 1

32
+ · · · + 1

2S+3

)
= 1

4
VC1,

VCN−1 = 1

2N−1
V1 + V2

(
1

2N
+ · · · + 1

2S+N−1

)
= 1

2N−1
VC1,

where V1 depicts the complexity of the first stage VS1 and V2 is the complexity of the
second stage VS2 (see Fig. 5.68). It can be seen that the total vertical complexity is given
by

VC = VC1

(
1 + 1

2
+ 1

4
+ · · · + 1

2N−1

)
. (5.246)

The upper bound of the total complexity results is the sum of horizontal and vertical
complexities and can be written as

Ctot = HC1 + HC2 + 2VC1. (5.247)

The total complexity Ctot is independent of the number of frequency bands N and vertical
stages S. This means that for real-time implementation with finite computation power, any
desired number of subbands with arbitrarily narrow transition bands can be implemented!
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5.4.2 Example: Eight-band Multi-complementary Filter Bank

In order to implement the frequency decomposition into the eight bands shown in Fig. 5.70,
the multirate filter structure of Fig. 5.71 is employed. The individual parts of the system
provide means of downsampling (D = decimation), upsampling (I = interpolation), kernel
filtering (K), signal processing (SP), delays (N1 = Delay 1, N2 = Delay 2) and group delay
compensation Mi in the ith band. The frequency decomposition is carried out successively
from the highest to the lowest frequency band. In the two lowest frequency bands, a com-
pensation for group delay is not required. The slope of the filter response can be adjusted
with the kernel complementary filter structure shown in Fig. 5.72 which consists of one
stage. The specifications of an eight-band equalizer are listed in Table 5.11. The stop-band
attenuation of the subband filters is chosen to be 100 dB.

�**2 *�
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*?

%$4 %��1��%��1<�%$�%$�%$2
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7%
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Figure 5.70 Modified octave decomposition of the frequency band.

Table 5.11 Transition frequencies fCi and transition bandwidths TB in an eight-band equalizer.

fS [kHz] fC1 [Hz] fC2 [Hz] fC3 [Hz] fC4 [Hz] fC5 [Hz] fC6 [Hz] fC7 [Hz]

44.1 7350 3675 1837.5 918.75 459.375 ≈230 ≈115
TB [Hz] 1280 640 320 160 80 40 20

Filter Design

The design of different decimation and interpolation filters is mainly determined by the
transition bandwidth and the stop-band attenuation for the lower frequency band. As an
example, a design is made for an eight-band equalizer. The kernel complementary filter
structure for both lower frequency bands is illustrated in Fig. 5.72. The design specifications
for the kernel low-pass, decimation and interpolation filters are presented in Fig. 5.73.

Kernel Filter Design. The transition bandwidth of the kernel filter is known if the transition
bandwidth is given for the lower frequency band. This kernel filter must be designed for
a sampling rate of f ′′

S = 44100/(28). For a given transition bandwidth fT B at a frequency
f ′′ = f ′′

S /3, the normalized pass-band frequency is

�′′
Pb

2π
= f ′′ − fTB/2

f ′′
S

(5.248)

and the normalized stop-band frequency

�′′
Sb

2π
= f ′′ + fTB/2

f ′′
S

. (5.249)
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Figure 5.71 Linear phase eight-band equalizer.
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Figure 5.72 Kernel complementary filter structure.

With the help of these parameters the filter can be designed. Making use of the Parks–
McClellan program, the frequency response shown in Fig. 5.74 is obtained for a transi-
tion bandwidth of fTB = 20 Hz. The necessary filter length for a stop-band attenuation of
100 dB is 53 taps.

Decimation and Interpolation High-pass Filter. These filters are designed for a sampling
rate of f ′

S = 44100/(27) and are half-band filters as illustrated in Fig. 5.73. First a low-pass
filter is designed, followed by a high-pass to low-pass transformation. For a given transition
bandwidth fT B , the normalized pass-band frequency is

�′
Pb

2π
= f ′′ + fTB/2

f ′
S

(5.250)

and the normalized stop-band frequency is given by

�′
Sb

2π
= 2f ′′ − fTB/2

f ′
S

. (5.251)

With these parameters the design of a half-band filter is carried out. Figure 5.75 shows the
frequency response. The necessary filter length for a stop-band attenuation of 100 dB is
55 taps.

Decimation and Interpolation Low-pass Filter. These filters are designed for a sampling
rate of fS = 44100/(26) and are also half-band filters. For a given transition bandwidth
fTB, the normalized pass-band frequency is

�Pb

2π
= 2f ′′ + fTB/2

fS

(5.252)

and the normalized stop-band frequency is given by

�Sb

2π
= 4f ′′ − fTB/2

fS

. (5.253)
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Figure 5.73 Decimation and interpolation filters.

With these parameters the design of a half-band filter is carried out. Figure 5.76 shows the
frequency response. The necessary filter length for a stop-band attenuation of 100 dB is
43 taps. These filter designs are used in every decomposition stage so that the transition
frequencies and bandwidths are obtained as listed in Table 5.11.

Memory Requirements and Latency Time. The memory requirements depend directly
on the transition bandwidth and the stop-band attenuation. Here, the memory operations
for the actual kernel, decimation and interpolation filters have to be differentiated from the
group delay compensations in the frequency bands. The compensating group delay N1 for
decimation and interpolation high-pass filters of order ODHP/IHP is calculated with the help
of the kernel filter order OKF according to

N1 = OKF + ODHP/IHP. (5.254)
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Figure 5.74 Kernel low-pass filter with a transition bandwidth of 20 Hz.
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Figure 5.75 Decimation and interpolation high-pass filter.

The group delay compensation N2 for the decimation and interpolation low-pass filters of
order ODLP/ILP is given by

N2 = 2N1 + ODLP/ILP. (5.255)
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Figure 5.76 Decimation and interpolation low-pass filter.

The delays M3, . . . , M8 in the individual frequency bands are calculated recursively start-
ing from the two lowest frequency bands:

M3 = 2N2, M4 = 6N2, M5 = 14N2,

M6 = 30N2, M7 = 62N2, M8 = 126N2.

The memory requirements per decomposition stage are listed in Table 5.12. The memory
for the delays can be computed by

∑
i Mi = 240N2. The latency time (delay) is given by

tD = (M8/44100)103 ms (tD = 725 ms).

Table 5.12 Memory requirements.

Kernel filter OKF

DHP/IHP 2 · ODHP/IHP
DLP/ILP 3 · ODLP/ILP

N1 OKF + ODHP/IHP
N2 2 · N1 + ODLP/ILP

5.5 Java Applet – Audio Filters

The applet shown in Fig. 5.77 demonstrates audio filters. It is designed for a first insight into
the perceptual effect of filtering an audio signal. Besides the different filter types and their
acoustical effect, the applet offers a first insight into the logarithmic behavior of loudness
and frequency resolution of our human acoustical perception.
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The following filter functions can be selected on the lower right of the graphical user
interface:

• Low-/high-pass filter (LP/HP) with control parameter

– cutoff frequency fc in hertz (lower horizontal slider)

– all frequencies above (LP) or below (HP) the cutoff frequency are attenuated
according to the shown frequency response.

• Low/high-frequency shelving filter (LFS/HFS) with control parameters

– cutoff frequency fc in hertz (lower horizontal slider)

– boost/cut in dB (left vertical slider with + for boost or − for cut)

– all frequencies below (LFS) or above (HFS) the cutoff frequency are boosted/
cut according to the selected boost/cut.

• Peak filter with control parameters

– center frequency fc in hertz (lower horizontal slider)

– boost/cut in dB (left vertical slider with + for boost or − for cut)

– Q-factor Q = fc/fb (right vertical slider), which controls the bandwidth fb of
the boost/cut around the adjusted center frequency fc. Lower Q-factor means
wider bandwidth.

– the peak filter boosts/cuts the center frequency with a bandwidth adjusted by
the Q-factor.

The center window shows the frequency response (filter gain versus frequency) of the
selected filter functions. You can choose between a linear and a logarithmic frequency
axis.

You can choose between two predefined audio files from our web server (audio1.wav
or audio2.wav) or your own local wav file to be processed [Gui05].

5.6 Exercises

1. Design of Recursive Audio Filters

1. How can we design a low-frequency shelving filter? Which parameters define the
filter? Explain the control parameters.

2. How can we derive a high-frequency shelving filter? Which parameters define the
filter?

3. What is the difference between first- and second-order shelving filters.

4. How can we design a peak filter? Which parameters define the filter? What is the
filter order? Explain the control parameters. Explain the Q-factor.

5. How do we derive the digital transfer function?

6. Derive the digital transfer functions for the first-order shelving filters.
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Figure 5.77 Java applet – audio filters.

2. Parametric Audio Filters

1. What is the basic idea of parametric filters?

2. What is the difference between the Regalia and the Zölzer filter structures? Count
the number of multiplications and additions for both filter structures.

3. Derive a signal flow graph for first- and second-order parametric Zölzer filters with
a direct-form implementation of the all-pass filters.

4. Is there a complete decoupling of all control parameters for boost and cut? Which
parameters are decoupled?

3. Shelving Filter: Direct Form

Derive a first-order low shelving filter from a purely band-limiting first-order low-pass
filter. Use a bilinear transform and give the transfer function of the low shelving filter.

1. Write down what you know about the filter coefficients and calculate the poles/zeros
as functions of V0 and T . What gain factor do you have if z = ±1?

2. What is the difference between purely band-limiting filters and the shelving filter?

3. How can you describe the boost and cut effect related to poles/zeros of the filter?

4. How do we get a transfer function for the boost case from the cut case?

5. How do we go from a low shelving filter to a high shelving filter?
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4. Shelving Filter: All-pass Form

Implement a first-order high shelving filter for the boost and cut cases with the sampling
rate fS = 44.1 kHz, cutoff frequency fc = 10 kHz and gain G = 12 dB.

1. Define the all-pass parameters and coefficients for the boost and cut cases.

2. Derive from the all-pass decomposition the complete transfer function of the shelving
filter.

3. Using Matlab, give the magnitude frequency response for boost and cut. Show the
result for the case where a boost and cut filter are in a series connection.

4. If the input signal to the system is a unit impulse, give the spectrum of the input and
out signal for the boost and cut cases. What result do you expect in this case when
boost and cut are again cascaded?

5. Quantization of Filter Coefficients

For the quantization of the filter coefficients different methods have been proposed: direct
form, Gold and Rader, Kingsbury and Zölzer.

1. What is the motivation behind this?

2. Plot a pole distribution using the quantized polar representation of a second-order
IIR filter

H(z) = N(z)

1 − 2r cos ϕz−1 + r2z−2
.

6. Signal Quantization inside the Audio Filter

Now we combine coefficient and signal quantization.

1. Design a digital high-pass filter (second-order IIR), with a cutoff frequency fc =
50 Hz. (Use the Butterworth, Chebyshev or elliptic design methods implemented in
Matlab.)

2. Quantize the signal only when it leaves the accumulator (i.e. before it is saved in any
state variable).

3. Now quantize the coefficients (direct form), too.

4. Extend your quantization to every arithmetic operation (i.e. after each addition/
multiplication).
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7. Quantization Effects in Recursive Audio Filters

1. Why is the quantization of signals inside a recursive filter of special interest?

2. Derive the noise transfer function of the second-order direct-form filter. Apply a first-
and second-order noise shaping to the quantizer inside the direct-form structure and
discuss its influence. What is the difference between second-order noise shaping and
double-precision arithmetic?

3. Write a Matlab implementation of a second-order filter structure for quantization and
noise shaping.

8. Fast Convolution

For an input sequence x(n) of length N1 = 500 and the impulse response h(n) of length
N2 = 31, perform the discrete-time convolution.

1. Give the discrete-time convolution sum formula.

2. Using Matlab, define x(n) as a sum of two sinusoids and derive h(n) with Matlab
function remez(..).

3. Realize the filter operation with Matlab using:

• the function conv(x,h)

• the sample-by-sample convolution sum method

• the FFT method

• the FFT with overlap-add method.

4. Describe FIR filtering with the fast convolution technique. What conditions do the
input signal and the impulse responses have to fulfill if convolution is performed by
equivalent frequency-domain processing?

5. What happens if input signal and impulse response are as long as the FFT transform
length?

6. How can we perform the IFFT by the FFT algorithm?

7. Explain the processing steps

• for a segmentation of the input signal into blocks and fast convolution;

• for a stereo signal by the fast convolution technique;

• for the segmentation of the impulse response.

8. What is the processing delay of the fast convolution technique?

9. Write a Matlab program for fast convolution.

10. How does quantization of the signal influence the roundoff noise behavior of an FIR
filter?
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9. FIR Filter Design by Frequency Sampling

1. Why is frequency sampling an important design method for audio equalizers? How
do we sample magnitude and phase response?

2. What is the linear phase frequency response of a system? What is the effect on an
input signal passing through such a system?

3. Explain the derivation of the magnitude and phase response for a linear phase FIR
filter.

4. What is the condition for a real-valued impulse response of even length N? What is
the group delay?

5. Write a Matlab program for the design of an FIR filter and verify the example in the
book.

6. If the desired frequency response is an ideal low-pass filter of length NF = 31 with
cutoff frequency �c = π/2, derive the impulse response of this system. What will
the result be for NF = 32 and �c = π?

10. Multi-complementary Filter Bank

1. What is an octave-spaced frequency splitting and how can we design a filter bank for
that task?

2. How can we perform aliasing-free subband processing? How can we achieve narrow
transition bands for a filter bank? What is the computational complexity of an octave-
spaced filter bank?
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Chapter 6

Room Simulation

Room simulation artificially reproduces the acoustics of a room. The foundations of room
acoustics are found in [Cre78, Kut91]. Room simulation is mainly used for post-processing
signals in which a microphone is located in the vicinity of an instrument or a voice. The
direct signal, without additional room impression, is mapped to a certain acoustical room,
for example a concert hall or a church. In terms of signal processing, the post-processing
of an audio signal with room simulation corresponds to the convolution of the audio signal
with a room impulse response.

6.1 Basics

6.1.1 Room Acoustics

The room impulse response between two points in a room can be classified as shown in
Fig. 6.1. The impulse response consists of the direct signal, early reflections (from walls)
and subsequent reverberation. The number of early reflections continuously increases with
time and leads to a random signal with exponential decay called subsequent reverberation.
The reverberation time (decrease in sound pressure level by 60 dB) can be calculated, using
the geometry of the room and the partial areas that absorb sound in the room, from

T60 = 0.163
V

αS
= 0.163

[m/s]
V∑

n αnSn

(6.1)

where T60 is the reverberation time (in s), V the volume of the room (m3), Sn the partial
areas (m2) and αn the absorption coefficient of partial area Sn.

The geometry of the room also determines the eigenfrequencies of a three-dimensional
rectangular room:

fe = c

2

√(nx

lx

)2 +
(ny

ly

)2 +
(nz

lz

)2
, (6.2)

where nx, ny, nz are integer number of half waves (0, 1, 2, . . .), lx , ly, lz are dimensions
of a rectangular room, and c is the velocity of sound.

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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|h(n)| Direct Signal

Early Reflections

Subsequent Reverberation

n

Figure 6.1 Room impulse response h(n) and simplified decomposition into direct signal, early
reflections and subsequent reverberation (with |h(n)|).

For larger rooms, the eigenfrequencies start from very low frequencies. In contrast, the
lowest eigenfrequencies of smaller rooms are shifted toward higher frequencies. The mean
frequency between two extrema of the frequency response of a large room is approximately
inversely proportional to the reverberation time [Schr87]:

�f ∼ 1/T60. (6.3)

The distance between two eigenfrequencies decreases with increasing number of half
waves. Above a critical frequency

fc > 4000
√

T60/V , (6.4)

the density of eigenfrequencies becomes so large that they overlap each other [Schr87].

6.1.2 Model-based Room Impulse Responses

The methods for analytically determining a room impulse response are based on the ray
tracing model [Schr70] or image model [All79]. In the case of the ray tracing model, a
point source with radial emission is assumed. The path length of rays and the absorption
coefficients of walls, roofs and floors are used to determine the room impulse response (see
Fig. 6.2). For the image model, image rooms with secondary image sources are formed
which in turn have further image rooms and image sources. The summation of all image
sources with corresponding delays and attenuations provides the estimated room impulse
response. Both methods are applied in room acoustics to get insight into the acoustical
properties when planning concert halls, theaters, etc.
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Figure 6.2 Model-based methods for calculating room impulse responses.

6.1.3 Measurement of Room Impulse Responses

The direct measurement of a room impulse response is carried out by impulse excitation.
Better measurement results are obtained by correlation measurement of room impulse
responses by using pseudo-random sequences as the excitation signal. Pseudo-random
sequences can be generated by feedback shift registers [Mac76]. The pseudo-random se-
quence is periodic with period L = 2N − 1, where N is the number of states of the shift
register. The autocorrelation function (ACF) of such a random sequence is given by

rXX(n) =



a2, n = 0, L, 2L, . . . ,

−a2

L
, elsewhere,

(6.5)

where a is the maximum value of the pseudo-random sequence. The ACF also has a
period L. After going through a DA converter, the pseudo-random signal is fed through
a loudspeaker into a room (see Fig. 6.3).

PC
CC -> h(n)

AD-
converter

Pseudo
Noise

Analog Inputs
L/R

Dig. Output

Room

x(t) y(t)

Figure 6.3 Measurement of room impulse response with pseudo-random signal x(t).

At the same time, the pseudo-random signal and the room signal captured by a mi-
crophone are recorded on a personal computer. The impulse response is obtained with the
cyclic cross-correlation

rXY(n) = rXX(n) ∗ h(n) ≈ h̃(n). (6.6)

For the measurement of room impulse responses it has to be borne in mind that the periodic
length of the pseudo-random sequence must be longer than the length of the room impulse
response. Otherwise, aliasing in the periodic cross-correlation rXY(n) (see Fig. 6.4) occurs.
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r (n)XX

0 L 2L
n

r (n)=h(n)XY

0 L 2L
n

Figure 6.4 Periodic autocorrelation of pseudo-random sequence and periodic cross-correlation.

To improve the signal-to-noise ratio of the measurement, the average of several periods of
the cross-correlation is calculated.

Sine sweep measurements [Far00, Mül01, Sta02] are based on a chirp signal xS(t) of
length TC and an inverse signal xSinv(t), where both satisfy the condition

xS(t) ∗ xSinv(t) = δ(t − TC). (6.7)

The chirp signal can be applied to the room by a loudspeaker and then a signal inside the
room y(t) = xS(t) ∗ h(n) is recorded. By performing the convolution of the received signal
y(t) with the inverse signal xSinv(t) one obtains the impulse response from

y(t) ∗ xSinv(t) = xS(t) ∗ h(n) ∗ xSinv(t) = h(t − TC). (6.8)

6.1.4 Simulation of Room Impulse Responses

The methods just described provide means for calculating the impulse response from the
geometry of a room and for measuring the impulse response of a real room. The reproduc-
tion of such an impulse response is basically possible with the help of the fast convolution
method as described in Chapter 5. The ear signals at a listening position inside the room
are computed by

yL(n) =
N−1∑
k=0

x(k) · hL(n − k), (6.9)

yR(n) =
N−1∑
k=0

x(k) · hR(n − k), (6.10)

where hL(n) and hR(n) are the measured impulse responses between the source inside the
room, which generates the signal x(n), and a dummy head with two ear microphones.
Special implementations of fast convolution with low latency are described in [Soo90,



6.2 Early Reflections 195

Gar95, Rei95, Ege96, Mül99, Joh00, Mül01, Garc02] and a hybrid approach based on
convolution and recursive filters can be found in [Bro01]. Investigations regarding fast
convolution with sparse psychoacoustic-based room impulse responses are discussed in
[Iid95, Lee03a, Lee03b].

In the following sections we will consider special approaches for early reflections and
subsequent reverberation, which allow a parametric adjustment of all relevant parameters
of a room impulse response. With this approach an accurate room impulse response is
not possible, but with a moderate computational complexity a satisfying solution from an
acoustic point of view can be achieved. In Section 6.4 an efficient implementation of the
convolutions (6.9) and (6.10) with a multirate signal processing approach [Zöl90, Sch92,
Sch93, Sch94] is discussed.

6.2 Early Reflections

Early reflections decisively affect room perception. Spatial impression is produced by
early reflections which reach the listener laterally. The significance of lateral reflections
in creating spatial impression was investigated by Barron [Bar71, Bar81]. Fundamental
investigations of concert halls and their different acoustics are described by Ando [And90].

6.2.1 Ando’s Investigations

The results of the investigations by Ando are summarized in the following:

• Preferred delay time of a single reflection: with the ACF of the signal, the delay is
determined from |rxx(�t1)| = 0.1 · rxx(0).

• Preferred direction of a single reflection: ±(55◦ ± 20◦).

• Preferred amplitude of a single reflection: A1 = ±5 dB.

• Preferred spectrum of a single reflection: no spectral shaping.

• Preferred delay time of a second reflection: �t2 = 1.8 · �t1.

• Preferred reverberation time: T60 = 23 · �t1.

These results show that in terms of perception, a preferred pattern of reflections as well
as the reverberation time depend decisively on the audio signal. Hence, for different audio
signals like classical music, pop music, speech or musical instruments entirely different
requirements for early reflections and reverberation time have to be considered.

6.2.2 Gerzon Algorithm

The commonly used method of simulating early reflections is shown in Figs 6.5 and 6.6.
The signal is weighted and fed into a system generating early reflections, followed by an
addition to the input signal. The first M reflections are implemented by reading samples
from a delay line and weighting these samples with a corresponding factor gi (see Fig. 6.6).
The design of a system for simulating early reflections will now be described as proposed
by Gerzon [Ger92].
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Figure 6.6 Early reflections.

Craven Hypothesis. The Craven hypothesis [Ger92] states that the human perception of
the distance to a sound source is evaluated with the help of the amplitude and delay time
ratios of the direct signal and early reflections as given by

g = d

d ′ , (6.11)

TD = d ′ − d

c
(6.12)

⇒ d = cTD

g−1 − 1
, (6.13)

where d is the distance of the source, d ′ the distance of the image source of the first
reflection, g the relative amplitude of the direct signal to first reflection, c the velocity
of sound, and TD the relative delay time of the first reflection to the direct signal.

Without a reflection, human beings are not able to determine the distance d to a sound
source. The extended Craven hypothesis includes the absorption coefficient r for
determining

g = d

d ′ exp(−rTD), (6.14)

TD = d ′ − d

c
(6.15)

→ d = cTD

g−1 exp(−rTD) − 1
(6.16)

→ g = exp(−rTD)

1 + cTD/d
. (6.17)

For a given reverberation time T60, the absorption coefficient can be calculated by using
exp(−rT60) = 1/1000, that is,

r = (ln 1000)/T60. (6.18)

With the relationships (6.15) and (6.17), the parameters for an early reflections simulator
as shown in Fig. 6.5 can be determined.
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Gerzon’s Distance Algorithm. For a system simulating early reflections produced by more
than one sound source, Gerzon’s distance algorithm can be used [Ger92], where several
sound sources are placed at different distances as well as in the stereo position into a
stereophonic sound field. An application of this technique is mainly used in multichannel
mixing consoles.

By shifting a sound source by −δ (decrease of relative delay time) it follows that from
the relative delay time of the first reflection TD − δ/c = [d ′ − (d + δ)]/c, and the relative
amplitude according to (6.17),

gδ = 1

1 + c(TD−δ/c)
d+δ

exp(−r(TD − δ/c)) =
[
d + δ

d
exp(rδ/c)

]
exp(−rTD)

1 + cTD/d
. (6.19)

This results in a delay and a gain factor for the direct signal (see Fig. 6.7) as given by

d2 = d + δ, (6.20)

tD = δ/c, (6.21)

gD = d

d + δ
exp(−rδ/c). (6.22)

DEL

Early Reflections
Simulator

y(n)x(n)

n

h(n)

Direct Signal

Early Reflections

Figure 6.7 Delay and weighting of the direct signal.

By shifting a sound source by +δ (increase in relative delay time) the relative delay
time of the first reflection is TD − δ/c = [d ′ − (d − δ)]/c. As a consequence, the delay
and the gain factor for the effect signal (see Fig. 6.8) are given by

d2 = d − δ, (6.23)

tE = δ/c, (6.24)

gE = d

d + δ
exp(−rδ/c). (6.25)

Using two delay systems in the direct signal as well as in the reflection path, two cou-
pled weighting factors and delay lengths (see Fig. 6.9) can be obtained. For multichannel
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Figure 6.8 Delay and weighting of effect signal.

applications like digital mixing consoles, the scheme in Fig. 6.10 is suggested by Gerzon
[Ger92]. Only one system for implementing early reflections is necessary.
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Figure 6.9 Coupled factors and delays.

Stereo Implementation. In many applications, stereo signals have to be processed (see
Fig. 6.11). For this purpose, reflections from both sides with positive and negative angles
are implemented to avoid stereo displacements. The weighting is done with

gi = exp(−rT i )

1 + cT i/d
,

Gi = gi

(
cos i −sin i

sin i cos i

)
. (6.26)

For each reflection, a weighting factor and an angle have to be considered.

Generation of Early Reflection with Increasing Time Density. In [Schr61] it is stated
that the time density of reflections increases with the square of time:

Number of reflections per second = (4πc3/V ) · t2. (6.27)

After time tC the reflections have a statistical decay behavior. For a pulse width of �t ,
individual reflections overlap after

tC = 5 · 10−5
√

V/�t. (6.28)
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Figure 6.10 Multichannel application.
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Figure 6.11 Stereo reflections.

To avoid overlap of reflections, Gerzon [Ger92] suggests increasing the density of reflec-
tions with tp (for example, p = 1, 0.5 leads to t or t0.5). In the interval (0, 1], with initial
value x0 and a number k between 0.5 and 1 the following procedure is performed:

yi = x0 + ik (mod 1), i = 0, 1, . . . , M − 1. (6.29)

The numbers yi in the interval (0, 1] are now transformed to time delays Ti in the interval
[Tmin, Tmin + Tmax] by

b = T
1+p

min , (6.30)

a = (Tmax + Tmin)
1+p − b, (6.31)

Ti = (ayi + b)1/(1+p). (6.32)

The increase in the density of reflections is shown by the example in Fig. 6.12.
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Figure 6.12 Increase in density for nine reflections.

6.3 Subsequent Reverberation

This section deals with techniques for reproducing subsequent reverberation. The first
approaches by Schroeder [Schr61, Schr62] and their extension by Moorer [Moo78] will
be described. Further developments by Stautner and Puckette [Sta82], Smith [Smi85],
Dattarro [Dat97], and Gardner [Gar98] led to general feedback networks [Ger71, Ger76,
Jot91, Jot92, Roc95, Roc96, Roc97, Roc02] which have a random impulse response with
exponential decay. An extensive discussion on analysis and synthesis parameters of sub-
sequent reverberation can be found in [Ble01]. Apart from the echo density, an important
parameter of subsequent reverberation [Cre03] is the quadratic increase in

Frequency density = 4πV

c3
· f 2 (6.33)

with frequency. The following systems exhibit a quadratic increase in echo density and
frequency density.

6.3.1 Schroeder Algorithm

The first software implementations of room simulation algorithms were carried out in 1961
by Schroeder. The basis for simulating an impulse response with exponential decay is a
recursive comb filter as shown in Fig. 6.13.

The transfer function is given by

H(z) = z−M

1 − gz−M
, (6.34)

=
M−1∑
k=0

Ak

z − zk
, (6.35)
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Figure 6.13 Recursive comb filter (g = feedback factor, M = delay length).

with

Ak = zk

Mg
residues, (6.36)

zk = r ej2πk/M poles, (6.37)

r = g1/M pole radius. (6.38)

With the correspondence of the Z-transform a/(z − a) ◦—• ε(n − 1)an the impulse re-
sponse is given by

H(z) ◦—• h(n) = ε(n − 1)

Mg

M−1∑
k=0

zn
k

h(n) = ε(n − 1)

Mg
rn

M−1∑
k=0

ej�kn. (6.39)

The complex poles are combined as pairs so that the impulse response can be written as

h(n) = ε(n − 1)

Mg
rn

M/2−1∑
k=1

cos �kn, M even, (6.40)

= ε(n − 1)

Mg
rn

[
1 +

M+1/2−1∑
k=1

cos �kn

]
, M uneven. (6.41)

The impulse response is expressed as a summation of cosine oscillations with frequencies
�k . These frequencies correspond to the eigenfrequencies of a room. They decay with an
exponential envelope rn, where r is the damping constant (see Fig. 6.15a). The overall
impulse response is weighted by 1/Mg. The frequency response of the comb filter is shown
in Fig. 6.15c and is given by

|H(ej�)| =
√

1

1 − 2g cos(�M) + g2
. (6.42)

It shows maxima at � = 2πk/M(k = 0, 1, . . . , M − 1) of magnitude

|H(ej�)|max = 1

1 − g
, (6.43)

and minima at � = (2k + 1)π/M(k = 0, 1, . . . , M − 1) of magnitude

|H(ej�)|min = 1

1 + g
. (6.44)
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Another basis of the Schroeder algorithm is the all-pass filter shown in Fig. 6.14 with
transfer function

H(z) = z−M − g

1 − gz−M
(6.45)

= z−M

1 − gz−M
− g

1 − gz−M
. (6.46)

From (6.46) it can be seen that the impulse response can also be expressed as a summation
of cosine oscillations.
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Figure 6.14 All-pass filter (M = delay length).

The impulse responses and frequency responses of a comb filter and an all-pass filter are
presented in Fig. 6.15. Both impulse responses show an exponential decay. A sample in the
impulse response occurs every M sampling periods. The density of samples in the impulse
responses does not increase with time. For the recursive comb filter, spectral shaping due
to the maxima at the corresponding poles of the transfer function is observed.

Frequency Density

The frequency density describes the number of eigenfrequencies per hertz and is defined
for a comb filter [Jot91] as

Df = M · TS [1/Hz]. (6.47)

A single comb filter gives M resonances in the interval [0, 2π], which are separated by a
frequency distance of �f = fS/M . In order to increase the frequency density, a parallel
circuit (see Fig. 6.16) of P comb filters is used which leads to

H(z) =
P∑

p=1

z−Mp

1 − gpz−Mp
=
[

z−M1

1 − g1z−M1
+ z−M2

1 − g2z−M2
+ · · ·

]
. (6.48)

The choice of the delay systems [Schr62] is suggested as

M1 : MP = 1 : 1.5 (6.49)

and leads to a frequency density

Df =
P∑

p=1

Mp · TS = P · M · TS. (6.50)
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Figure 6.15 (a) Impulse response of a comb filter (M = 10, g = −0.6). (b) Impulse response of an
all-pass filter (M = 10, g = −0.6). (c) Frequency response of a comb filter. (d) Frequency response
of an all-pass filter.

In [Schr62] a necessary frequency density of Df = 0.15 eigenfrequencies per hertz is
proposed.

Echo Density

The echo density is the number of reflections per second and is defined for a comb filter
[Jot91] as

Dt = 1

M · TS

[1/s]. (6.51)

For a parallel circuit of comb filters, the echo density is given by

Dt =
P∑

p=1

1

Mp · TS

= P
1

M · TS

. (6.52)
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Figure 6.16 Parallel circuit of comb filters.

With (6.50) and (6.52), the number of parallel comb filters and the mean delay length are
given by

P =√Df · Dt , (6.53)

MTS =√Df /Dt . (6.54)

For a frequency density Df = 0.15 and an echo density Dt = 1000 it can be concluded that
the number of parallel comb filters is P = 12 and the mean delay length is MTS = 12 ms.
Since the frequency density is proportional to the reverberation time, the number of parallel
comb filters has to be increased accordingly.

A further increase in the echo density is achieved by a cascade circuit of PA all-pass
filters (see Fig. 6.17) with transfer function

H(z) =
PA∏
p=1

z−Mp − gp

1 − gpz−Mp
. (6.55)

These all-pass sections are connected in series with the parallel circuit of comb filters. For
a sufficient echo density, 10000 reflections per second are necessary [Gri89].

Avoiding Unnatural Resonances

Since the impulse response of a single comb filter can be described as a sum of M (delay
length) decaying sinusoidal oscillations, the short-time FFT of consecutive parts from this
impulse response gives the frequency response shown in Fig. 6.18 in the time-frequency
domain. Only the maxima are presented. The parallel circuit of comb filters with the con-

dition (6.49) leads to radii of pole distribution as given by rp = g
1/Mp
p (p = 1, 2, . . . , P ).

In order to avoid unnatural resonances, the radii of the pole distribution of a parallel circuit
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Figure 6.17 Cascade circuit of all-pass filters.

of comb filters must satisfy the condition

rp = const. = g
1/Mp
p , for p = 1, 2, . . . , P . (6.56)

This leads to the short-time spectra and the pole distribution as shown in Fig. 6.19.
Figure 6.20 shows the impulse response and the echogram (logarithmic presentation of
the amplitude of the impulse response) of a parallel circuit of comb filters with equal and
unequal pole radii. For unequal pole radius, the different decay times of the eigenfrequen-
cies can be seen.
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Figure 6.18 Short-time spectra of a comb filter (M = 8).

Reverberation Time

The reverberation time of a recursive comb filter can be adjusted with the feedback factor
g which describes the ratio

g = h(n)

h(n − M)
(6.57)

of two different nonzero samples of the impulse response separated by M sampling periods.
The factor g describes the decay constant per M samples. The decay constant per sampling
period can be calculated from the pole radius r = g1/M and is defined as

r = h(n)

h(n − 1)
. (6.58)
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Figure 6.19 Short-time spectra of a parallel circuit of comb filters.
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Figure 6.20 Impulse response and echogram.

The relationship between feedback factor g and pole radius r can also be expressed using
(6.57) and (6.58) and is given by

g = h(n)

h(n − M)
= h(n)

h(n − 1)
· h(n − 1)

h(n − 2)
· · · h(n − (M − 1))

h(n − M)
= r · r · r · · · r = rM.

(6.59)
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With the constant radius r = g
1/Mp
p and the logarithmic parameters R = 20 log10 r and

Gp = 20 log10 gp, the attenuation per sampling period is given by

R = Gp

Mp

. (6.60)

The reverberation time is defined as decay time of the impulse response to −60 dB. With
−60/T60 = R/TS , the reverberation time can be written as

T60 = −60
TS

R
= −60

TSMp

Gp

= 3

log10 |1/gp|Mp · TS. (6.61)

The control of reverberation time can either be carried out with the feedback factor g or
the delay parameter M . The increase in the reverberation time with factor g is responsible
for a pole radius close to the unit circle and, hence, leads to an amplification of maxima of
the frequency response (see (6.43)). This leads to a coloring of the sound impression. The
increase in the delay parameter M , on the other hand, leads to an impulse response whose
nonzero samples are far apart from each other, so that individual echoes can be heard. The
discrepancy between echo density and frequency density for a given reverberation time can
be solved by a sufficient number of parallel comb filters.

Frequency-dependent Reverberation Time

The eigenfrequencies of rooms have a rapid decay for high frequencies. A frequency-
dependent reverberation time can be implemented with a low-pass filter

H1(z) = 1

1 − az−1
(6.62)

in the feedback loop of a comb filter. The modified comb filter in Fig. 6.21 has transfer
function

H(z) = z−M

1 − gH1(z)z−M
(6.63)

with the stability criterion
g

1 − a
< 1. (6.64)
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Figure 6.21 Modified low-pass comb filter.
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The short-time spectra and the pole distribution of a parallel circuit with low-pass comb
filters are presented in Fig. 6.22. Low eigenfrequencies decay more slowly than higher ones.
The circular pole distribution becomes an elliptical distribution where the low-frequency
poles are moved toward the unit circle.
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Figure 6.22 Short-time spectra of a parallel circuit of low-pass comb filters.

Stereo Room Simulation

An extension of the Schroeder algorithm was suggested by Moorer [Moo78]. In addition to
a parallel circuit of comb filters in series with a cascade of all-pass filters, a pattern of early
reflections is generated. Figure 6.23 shows a room simulation system for a stereo signal.
The generated room signals eL(n) and eR(n) are added to the direct signals xL(n) and
xR(n). The input of the room simulation is the mono signal xM(n) = xL(n) + xR(n) (sum
signal). This mono signal is added to the left and right room signals after going through
a delay line DEL1. The total sum of all reflections is fed via another delay line DEL2 to
a parallel circuit of comb filters which implements subsequent reverberation. In order to
get a high-quality spatial impression, it is necessary to decorrelate the room signals eL(n)

and eR(n) [Bla74, Bla85]. This can be achieved by taking left and right room signals at
different points out of the parallel circuit of comb filters. These room signals are then fed
to an all-pass section to increase the echo density.

Besides the described system for stereo room simulation in which the mono signal is
processed with a room algorithm, it is also possible to perform complete stereo process-
ing of xL(n) und xR(n), or to process a mono signal xM(n) = xL(n) + xR(n) and a side
(difference) signal xS(n) = xL(n) − xR(n) individually.

6.3.2 General Feedback Systems

Further developments of the comb filter method by Schroeder tried to improve the acoustic
quality of reverberation and especially the increase in echo density [Ger71, Ger76, Sta82,
Jot91, Jot92, Roc95, Roc96, Roc97a, RS97b]. With respect to [Jot91], the general feedback
system in Fig. 6.24 is considered. For the sake of simplicity only three delay systems are
shown. The feedback of output signals is carried out with the help of a matrix A which
feeds back each of the three outputs to the three inputs.
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Figure 6.23 Stereo room simulation.

"7
:'7
:

	�� 	�� 	�2

	�� 	�� 	�2

	2� 	2� 	22

.

.

.

�

�

�

� �

��

2 2

-

 ��2

���7
:

���7
:

���7
:

�

�

2

 ���

 ���

Figure 6.24 General feedback system.
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In general, for N delay systems we can write

y(n) =
N∑

i=1

ciqi(n) + dx(n), (6.65)

qj (n + mj) =
N∑

i=1

aijqi(n) + bjx(n), 1 ≤ j ≤ N. (6.66)

The Z-transform leads to

Y (z) = cT Q(z) + d · X(z), (6.67)

D(z) · Q(z) = A · Q(z) + b · X(z)

→ Q(z) = [D(z) − A]−1b · X(z), (6.68)

with

Q(z) =



Q1(z)
...

QN(z)


 , b =




b1
...

bN


 , c =




c1
...

cN


 (6.69)

and the diagonal delay matrix

D(z) = diag[z−m1 · · · z−mN ]. (6.70)

With (6.68) the Z-transform of the output is given by

Y (z) = cT [D(z) − A]−1b · X(z) + d · X(z) (6.71)

and the transfer function by

H(z) = cT [D(z) − A]−1b + d. (6.72)

The system is stable if the feedback matrix A can be expressed as a product of a

unitary matrix U (U−1 = U
T

) and a diagonal matrix with gii < 1 (derivation in [Sta82]).
Figure 6.25 shows a general feedback system with input vector X(z), output vector Y(z),
a diagonal matrix D(z) consisting of purely delay systems z−mi , and a feedback matrix A.
This feedback matrix consists of an orthogonal matrix U multiplied by the matrix G which
results in a weighting of the feedback matrix A.

If an orthogonal matrix U is chosen and the weighting matrix is equal to the unit matrix
G = I, the system in Fig. 6.25 implements a white-noise random signal with Gaussian
distribution when a pulse excitation is applied to the input. The time density of this signal
slowly increases with time. If the diagonal elements of the weighting matrix G are less
than one, a random signal with exponential amplitude decay results. With the help of
the weighting matrix G, the reverberation time can be adjusted. Such a feedback system
performs the convolution of an audio input signal with an impulse response of exponential
decay.

The effect of the orthogonal matrix U on the subjective sound perception of subsequent
reverberation is of particular interest. A relationship between the distribution of the eigen-
values of the matrix U on the unit circle and the poles of the system transfer function cannot
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D(z)

A=UG

X(z) Y(z)

Figure 6.25 Feedback system.

be described analytically, owing to the high order of the feedback system. In [Her94], it is
shown experimentally that the distribution of eigenvalues within the right-hand or left-hand
complex plane produces a uniform distribution of poles of the system transfer function.
Such a feedback matrix leads to an acoustically improved reverberation. The echo density
rapidly increases to the maximum value of one sample per sampling period for a uniform
distribution of eigenvalues. Besides the feedback matrix, additional digital filtering is nec-
essary for spectrally shaping the subsequent reverberation and for implementing frequency-
dependent decay times (see [Jot91]). The following example illustrates the increase of the
echo density.

Example: First, a system with only one feedback path per comb filter is considered. The
feedback matrix is then given by

A = g√
2

I. (6.73)

Figure 6.26 shows the impulse response and the amplitude frequency response.

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

Impulse Response

n →

h(
n)

→

-20

-15

-10

-5

0

5

10
15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency Response

H
(f

/f
S

)
in

dB
→

f/fS →

Figure 6.26 Impulse response and frequency response of a 4-delay system with a unit matrix as
unitary feedback matrix (g = 0.83).
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With the feedback matrix

A = g√
2




0 1 1 0
−1 0 0 −1

1 0 0 −1
0 1 −1 0


 (6.74)

from [Sta82], the impulse response and the corresponding frequency response shown in
Fig. 6.27 are obtained. In contrast to Fig. 6.26, an increase in the echo density of the impulse
response is observed.
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Figure 6.27 Impulse response and frequency response of a 4-delay system with unitary feedback
matrix (g = 0.63).

6.3.3 Feedback All-pass Systems

In addition to the general feedback systems, simple delay systems with feedback have been
used for room simulators (see Fig. 6.28). Theses simulators are based on a delay line,
where single delays are fed back with L feedback coefficients to the input. The sum of
the input signal and feedback signal is low-pass filtered or spectrally weighted by a low-
frequency shelving filter and is then put to the delay line again. The first N reflections are
extracted out of the delay line according to the reflection pattern of the simulated room.
They are weighted and added to the output signal. The mixing between the direct signal
and the room signal is adjusted by the factor gMIX. The inner system can be described by a
rational transfer function H(z) = Y (z)/X(z). In order to avoid a low frequency density the
feedback delay lengths can be made time-variant [Gri89, Gri91].

Increasing the echo density can be achieved by replacing the delays z−Mi by frequency
dependent all-pass systems A(z−Mi ). This extension was first proposed by Gardner in
[Gar92, Gar98]. In addition to the replacement of z−Mi → A(z−Mi ), the all-pass systems
can be extended by embedded all-pass systems [Gar92]. Figure 6.29 shows an all-pass
system (Fig. 6.29a) where the delay z−M is replaced by a further all-pass and a unit delay
z−1 (Fig. 6.29b). The integration of a unit delay avoids delay-free loops. In Fig. 6.29c the
inner all-pass is replaced by a cascade of two all-pass systems and a further delay z−M3 .
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x(n)

gNg3g2g1

y(n)

gMIX

1-gMIX

TP z-M1 z-M2 z-M3 z-MN

gFB3gFB2gFB1

Figure 6.28 Room simulation with delay line and forward and backward coefficients.

The resulting system is again an all-pass system [Gar92, Gar98]. A further modification of
the general all-pass system is shown in Fig. 6.29d [Dat97, Vää97, Dah00]. Here, a delay
z−M followed by a low-pass and a weighting coefficient is used. The resulting system
is called an absorbent all-pass system. With these embedded all-pass systems the room
simulator shown in Fig. 6.28 is extended to a feedback all-pass system which is shown in
Fig. 6.30 [Gar92,Gar98]. The feedback is performed by a low-pass filter and a feedback
coefficient g, which adjusts the decay behavior. The extension to a stereo room simulator
is described in [Dat97, Dah00] and is depicted in Fig. 6.31 [Dah00]. The cascaded all-pass
systems Ai(z) in the left and right channel can be a combination of embedded and absorbent
all-pass systems. Both output signals of the all-pass chains are fed back to the input and
added. In front of both all-pass chains a coupling of both channels with a weighted sum
and difference is performed. The setup and parameters of such a system are discussed in
[Dah00]. A precise adjustment of reverberation time and control of echo density can be
achieved by the feedback coefficients of the all-passes. The frequency density is controlled
by the scaling of the delay lengths of the inner all-pass systems.

6.4 Approximation of Room Impulse Responses

In contrast to the systems for simulation of room impulse responses discussed up to this
point, a method is now presented that measures and approximates the room impulse re-
sponse in one step [Zöl90b, Sch92, Sch93] (see Fig. 6.32). Moreover, it leads to a paramet-
ric representation of the room impulse response. Since the decay times of room impulse
responses decrease for high frequencies, use is made of multirate signal processing.

The analog system that is to be measured and approximated is excited with a binary
pseudo-random sequence x(n) via a DA converter. The resulting room signal gives a digital
sequence y(n) after AD conversion. The discrete-time sequence y(n) and the pseudo-
random sequence x(n) are each decomposed by an analysis filter bank into subband signals
y1, . . . , yP and x1, . . . , xP respectively. The sampling rate is reduced in accordance with
the bandwidth of the signals. The subband signals y1, . . . , yP are approximated by adjust-
ing the subband systems H1(z) = A1(z)/B1(z), . . . , HP (z) = AP (z)/BP (z). The outputs
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g

z-M

-g

A(z)

a)

A(z)

-g1

b)

x(n)

g1

z-1
y(n)

A (z)1

-g1

c)

x(n)

g1

y(n)
z-M3A (z)2

-g1

d)

x(n)

g1

z-M H (z)TP

a
y(n)

Figure 6.29 Embedded and absorbing all-pass system [Gar92, Gar98, Dat97, Vää97, Dah00].
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Figure 6.30 Room simulator with embedded all-pass systems [Gar92,Gar98].

ŷ1, . . . , ŷP of these subband systems give an approximation of the measured subband
signals. With this procedure, the impulse response is given in parametric form (subband
parameters) and can be directly simulated in the digital domain.
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Figure 6.31 Stereo room simulator with absorbent all-pass systems [Dah00].
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Figure 6.32 System measuring and approximating room impulse responses.
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By suitably adjusting the analysis filter bank [Sch94], the subband impulse responses
are obtained directly from the cross-correlation function

hi ≈ rxiyi . (6.75)

The subband impulse responses are approximated by a nonrecursive filter and a recursive
comb filter. The cascade of both filters leads to the transfer function

Hi(z) = b0 + · · · + bMi z
−Mi

1 − giz−Ni
=

∞∑
ni=0

hi(ni)z
−ni , (6.76)

which is set equal to the impulse response in subband i. Multiplying both sides of (6.76)
by the denominator 1 − giz

−Ni gives

b0 + · · · + bMi z
−Mi =

( ∞∑
ni=0

hi(ni)z
−ni

)
(1 − giz

−Ni ). (6.77)

Truncating the impulse response of each subband to K samples and comparing the co-
efficients of powers of z on both sides of the equation, the following set of equations is
obtained: 



b0
b1
...

bM

0
...

0




=




h0 0 0 · · · 0
h1 h0 0 · · · 0
...

...
...

...

hM hM−1 hM−2 · · · hM−N

hM+1 hM hM−1 · · · hM−N+1
...

...
...

...

hK hK−1 hK−2 · · · hK−N







1
0
...

−g


 . (6.78)

The coefficients b0, . . . , bM and g in the above equation are determined in two steps.
First, the coefficient g of the comb filter is calculated from the exponentially decaying
envelope of the measured subband impulse response. The vector [1, 0, . . . , g]T is then
used to determine the coefficients [b0, b1, . . . , bM]T .

For the calculation of the coefficient g, we start with the impulse response of the comb
filter H(z) = 1/(1 − gz−N) given by

h(l = Nn) = gl. (6.79)

We further make use of the integrated impulse response

he(k) =
∞∑

n=k

h(n)2 (6.80)

defined in [Schr65]. This describes the rest energy of the impulse response at time k. By
taking the logarithm of he(k), a straight line over time index k is obtained. From the slope
of the straight line we use

ln g = N · ln he(n1) − ln he(n2)

n1 − n2
, n1 < n2, (6.81)
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to determine the coefficient g [Sch94]. For M = N , the coefficients in (6.78) of the numer-
ator polynomial are obtained directly from the impulse response

bn = hn, n = 0, 1, . . . , M − 1,

bM = hM − gh0. (6.82)

Hence, the numerator polynomial of (6.76) is a direct reproduction of the first M samples
of the impulse response (see Fig. 6.33). The denominator polynomial approximates the
further exponentially decaying impulse response. This method is applied to each subband.
The implementation complexity can be reduced by a factor of 10 compared with the direct
implementation of the broad-band impulse response [Sch94]. However, owing to the group
delay caused by the filter bank, this method is not so suitable for real-time applications.

b0g2

b0

bM
b1

h(n) h0 hM

b0g

bMg

n

Figure 6.33 Determining model parameters from the measured impulse response.

6.5 Java Applet – Fast Convolution

The applet shown in Fig. 6.34 demonstrates audio effects resulting from a fast convolution
algorithm. It is designed for a first insight into the perceptual effects of convolving an
impulse response with an audio signal.

The applet generates an impulse response by modulating the amplitude of a random
signal. The graphical interface presents the curve of the amplitude modulation, which can
be manipulated with three control points. Two control points are used for the initial behavior
of the amplitude modulation. The third control point is used for the exponential decay of
the impulse response. You can choose between two predefined audio files from our web
server (audio1.wav or audio2.wav) or your own local wav file to be processed [Gui05].

6.6 Exercises

1. Room Impulse Responses

1. How can we measure a room impulse response?

2. What kind of test signal is necessary?

3. How does the length of the impulse response affect the length of the test signal?
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Figure 6.34 Java applet – fast convolution.

2. First Reflections

For a given sound (voice sound) calculate the delay time of a single first reflection. Write a
Matlab program for the following computations.

1. How do we choose this delay time? What coefficient should be used for it?

2. Write an algorithm which performs the convolution of the input mono signal with
two impulse responses which simulate a reflection to the left output yL(n) and a
second reflection to the right output yR(n). Check the results by listening to the
output sound.

3. Improve your algorithm to simulate two reflections which can be positioned at any
angle inside the stereo mix.

3. Comb and All-pass Filters

1. Comb Filters: Based on the Schroeder algorithm, draw a signal flow graph for a
comb filter consisting of a single delay line of M samples with a feedback loop
containing an attenuation factor g.

(a) Derive the transfer function of the comb filter.

(b) Now the attenuation factor g is in the feed-forward path and in the feedback
loop no attenuation is applied. Why can we consider the impulse response of
this model to be similar to the previous one?

(c) In both cases how should we choose the gain factor? What will happen if we
do otherwise?

(d) Calculate the reverberation time of the comb filter for fS = 44.1 kHz, M = 8
and g specified previously.

(e) Write down what you know about the filter coefficients, plot the pole/zero
locations and the frequency response of the filter
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2. All-pass Filters: Realize an all-pass structure as suggested by Schroeder.

(a) Why can we expect a better result with an all-pass filter than with comb filter?
Write a Matlab function for a comb and all-pass filter with M = 8, 16.

(b) Derive the transfer function and show the pole/zero locations, the impulse re-
sponse, the magnitude and phase responses.

(c) Perform the filtering of an audio signal with the two filters and estimate the
delay length M which leads to a perception of a room impression.

4. Feedback Delay Networks

Write a Matlab program which realizes a feedback delay network.

1. What is the reason for a unitary feedback matrix?

2. What is the advantage of using a unitary circulant feedback matrix?

3. How do you control the reverberation time?
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Chapter 7

Dynamic Range Control

The dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum
signal amplitude and is given in decibels. The dynamic range of an audio signal lies
between 40 and 120 dB. The combination of level measurement and adaptive signal level
adjustment is called dynamic range control. Dynamic range control of audio signals is
used in many applications to match the dynamic behavior of the audio signal to different
requirements. While recording, dynamic range control protects the AD converter from
overload or is employed in the signal path to optimally use the full amplitude range of
a recording system. For suppressing low-level noise, so-called noise gates are used so that
the audio signal is passed through only from a certain level onwards. While reproducing
music and speech in a car, shopping center, restaurant or disco the dynamics have to match
the special noise characteristics of the environment. Therefore the signal level is measured
from the audio signal and a control signal is derived which then changes the signal level to
control the loudness of the audio signal. This loudness control is adaptive to the input level.

7.1 Basics

Figure 7.1 shows a block diagram of a system for dynamic range control. After measuring
the input level XdB(n), the output level YdB(n) is affected by multiplying the delayed input
signal x(n) by a factor g(n) according to

y(n) = g(n) · x(n − D). (7.1)

The delay of the signal x(n) compared with the control signal g(n) allows predictive control
of the output signal level. This multiplicative weighting is carried out with corresponding
attack and release time. Multiplication leads, in terms of a logarithmic level representation
of the corresponding signals, to the addition of the weighting level GdB(n) to the input
level XdB(n), giving the output level

YdB(n) = XdB(n) + GdB(n). (7.2)

Digital Audio Signal Processing Second Edition Udo Zölzer
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Figure 7.1 System for dynamic range control.

7.2 Static Curve

The relationship between input level and weighting level is defined by a static level curve
GdB(n) = f (XdB(n)). An example of such a static curve is given in Fig. 7.2. Here, the
output level and the weighting level are given as functions of the input level.
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Figure 7.2 Static curve with the parameters (LT = limiter threshold, CT = compressor threshold,
ET = expander threshold and NT = noise gate threshold).

With the help of a limiter, the output level is limited when the input level exceeds
the limiter threshold LT. All input levels above this threshold lead to a constant output
level. The compressor maps a change of input level to a certain smaller change of output
level. In contrast to a limiter, the compressor increases the loudness of the audio signal.
The expander increases changes in the input level to larger changes in the output level.
With this, an increase in the dynamics for low levels is achieved. The noise gate is used
to suppress low-level signals, for noise reduction and also for sound effects like truncating
the decay of room reverberation. Every threshold used in particular parts of the static curve
is defined as the lower limit for limiter and compressor and upper limit for expander and
noise gate.

In the logarithmic representation of the static curve the compression factor R (ratio) is
defined as the ratio of the input level change �PI to the output level change �PO :

R = �PI

�PO

. (7.3)
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With the help of Fig. 7.3 the straight line equation YdB(n) = CT + R−1(XdB(n) − CT) and
the compression factor

R = XdB(n) − CT

YdB(n) − CT
= tan βC (7.4)

are obtained, where the angle β is defined as shown in Fig. 7.2. The relationship between
the ratio R and the slope S can also be derived from Fig. 7.3 and is expressed as

S = 1 − 1

R
, (7.5)

R = 1

1 − S
. (7.6)
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Figure 7.3 Compressor curve (compressor ratio CR/slope CS).

Typical compression factors are

R = ∞, limiter,
R > 1, compressor (CR: compressor ratio),

0 < R < 1, expander (ER: expander ratio),
R = 0, noise gate.

(7.7)

The transition from logarithmic to linear representation leads, from (7.4), to

R = log10
x̂(n)
cT

log10
ŷ(n)
cT

, (7.8)

where x̂(n) and ŷ(n) are the linear levels and cT denotes the linear compressor threshold.
Rewriting (7.8) gives the linear output level

ŷ(n)

cT

= 101/R log10(x̂(n)/cT ) =
(

x̂(n)

cT

)1/R

ŷ(n) = c
1−1/R

T · x̂1/R(n) (7.9)

as a function of input level. The control factor g(n) can be calculated by the quotient

g(n) = ŷ(n)

x̂(n)
=
(

x̂(n)

cT

)1/R−1

. (7.10)
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With the help of tables and interpolation methods, it is possible to determine the control
factor without taking logarithms and antilogarithms. The implementation described as fol-
lows, however, makes use of the logarithm of the input level and calculates the control
level GdB(n) with the help of the straight line equation. The antilogarithm leads to the
value f (n) which gives the control factor g(n) with corresponding attack and release time
(see Fig. 7.1).

7.3 Dynamic Behavior

Besides the static curve of dynamic range control, the dynamic behavior in terms of attack
and release times plays a significant role in sound quality. The rapidity of dynamic range
control depends also on the measurement of PEAK and RMS values [McN84, Sti86].

7.3.1 Level Measurement

Level measurements [McN84] can be made with the systems shown in Figs 7.4 and 7.5.
For PEAK measurement, the absolute value of the input is compared with the peak value
xPEAK(n). If the absolute value is greater than the peak value, the difference is weighted
with the coefficient AT (attack time) and added to (1 − AT) · xPEAK(n − 1). For this attack
case |x(n)| > xPEAK(n − 1) we get the difference equation (see Fig. 7.4)

xPEAK(n) = (1 − AT) · xPEAK(n − 1) + AT · |x(n)| (7.11)

with the transfer function

H(z) = AT

1 − (1 − AT)z−1
. (7.12)

If the absolute value of the input is smaller than the peak value |x(n)| ≤ xPEAK(n − 1) (the
release case), the new peak value is given by

xPEAK(n) = (1 − RT) · xPEAK(n − 1) (7.13)

with the release time coefficient RT. The difference signal of the input will be muted by
the nonlinearity such that the difference equation for the peak value is given according to
(7.13). For the release case the transfer function

H(z) = 1

1 − (1 − RT)z−1 (7.14)

is valid. For the attack case the transfer function (7.12) with coefficient AT is used and for
the release case the transfer function (7.14) with the coefficient RT. The coefficients (see
Section 7.3.3) are given by

AT = 1 − exp

(−2.2TS

ta/1000

)
, (7.15)

RT = 1 − exp

(−2.2TS

tr/1000

)
, (7.16)
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where the attack time ta and the release time tr are given in milliseconds (TS sampling
interval). With this switching between filter structures one achieves fast attack responses
for increasing input signal amplitudes and slow decay responses for decreasing input signal
amplitudes.

AT

0 for
RT

|x(n)|>x (n)
for |x(n)|<x (n)

PEAK

PEAK

x(n)
|x(n)|

_ _

x (n)PEAK

z-1

Figure 7.4 PEAK measurement.

x(n)

TAV

x2(n) x2
RMS(n)

_

z-1

Figure 7.5 RMS measurement (TAV = averaging coefficient).

The computation of the RMS value

xRMS(n) =
√√√√ 1

N

N−1∑
i=0

x2(n − i) (7.17)

over N input samples can be achieved by a recursive formulation. The RMS measurement
shown in Fig. 7.5 uses the square of the input and performs averaging with a first-order
low-pass filter. The averaging coefficient

TAV = 1 − exp

( −2.2TA

tM/1000

)
(7.18)

is determined according to the time constant calculation discussed in Section 7.3.3, where
tM is the averaging time in milliseconds. The difference equation is given by

x2
RMS(n) = (1 − TAV) · x2

RMS(n − 1) + TAV · x2(n) (7.19)

with the transfer function

H(z) = TAV

1 − (1 − TAV)z−1
. (7.20)



230 Dynamic Range Control

7.3.2 Gain Factor Smoothing

Attack and release times can be implemented by the system shown in Fig. 7.6 [McN84].
The attack coefficient AT or release coefficient RT is obtained by comparing the input
control factor and the previous one. A small hysteresis curve determines whether the control
factor is in the attack or release state and hence gives the coefficient AT or RT. The system
also serves to smooth the control signal. The difference equation is given by

g(n) = (1 − k) · g(n − 1) + k · f (n), (7.21)

with k = AT or k = RT , and the corresponding transfer function leads to

H(z) = k

1 − (1 − k)z−1
. (7.22)

 ��

 ��
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Figure 7.6 Implementing attack and release time or gain factor smoothing.

7.3.3 Time Constants

If the step response of a continuous-time system is

g(t) = 1 − e−t/τ , τ = time constant, (7.23)

then sampling (step-invariant transform) the step response gives the discrete-time step
response

g(nTS) = ε(nTS) − e−nTS/τ = 1 − zn∞, z∞ = e−TS/τ . (7.24)

The Z-transform leads to

G(z) = z

z − 1
− 1

1 − z∞z−1 = 1 − z∞
(z − 1)(1 − z∞z−1)

. (7.25)

With the definition of attack time ta = t90 − t10, we derive

0.1 = 1 − e−t10/τ ← t10 = 0.1τ, (7.26)

0.9 = 1 − e−t90/τ ← t90 = 0.9τ. (7.27)
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The relationship between attack time ta and the time constant τ of the step response is
obtained as follows:

0.9/0.1 = e(t90−t10)/τ

ln(0.9/0.1) = (t90 − t10)/τ

ta = t90 − t10 = 2.2τ. (7.28)

Hence, the pole is calculated as

z∞ = e−2.2TS/ta . (7.29)

A system for implementing the given step response is obtained by the relationship between
the Z-transform of the impulse response and the Z-transform of the step response:

H(z) = z − 1

z
G(z). (7.30)

The transfer function can now be written as

H(z) = (1 − z∞)z−1

1 − z∞z−1
(7.31)

with the pole z∞ = e−2.2TS/ta adjusting the attack, release or averaging time. For the co-
efficients of the corresponding time constant filters the attack case is given by (7.15), the
release case by (7.16) and the averaging case by (7.18). Figure 7.7 shows an example where
the dotted lines mark the t10 and t90 time.

7.4 Implementation

The programming of a system for dynamic range control is described in the following
sections.

7.4.1 Limiter

The block diagram of a limiter is presented in Fig. 7.8. The signal xPEAK(n) is determined
from the input with variable attack and release time. The logarithm to the base 2 of this peak
signal is taken and compared with the limiter threshold. If the signal is above the threshold,
the difference is multiplied by the negative slope of the limiter LS. Then the antilogarithm
of the result is taken. The control factor f (n) obtained is then smoothed with a first-order
low-pass filter (SMOOTH). If the signal xPEAK(n) lies below the limiter threshold, the
signal f (n) is set to f (n) = 1. The delayed input x(n − D1) is multiplied by the smoothed
control factor g(n) to give the output y(n).

7.4.2 Compressor, Expander, Noise Gate

The block diagram of a compressor/expander/noise gate is shown in Fig. 7.9. The basic
structure is similar to the limiter. In contrast to the limiter, the logarithm of the signal
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xRMS(n) is taken and multiplied by 0.5. The value obtained is compared with three thresh-
olds in order to determine the operating range of the static curve. If one of the three
thresholds is crossed, the resulting difference is multiplied by the corresponding slope
(CS, ES, NS) and the antilogarithm of the result is taken. A first-order low-pass filter
subsequently provides the attack and release time.
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Figure 7.9 Compressor/expander/noise gate.
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Figure 7.10 Limiter/compressor/expander/noise gate.

7.4.3 Combination System

A combination of a limiter that uses PEAK measurement, and a compressor/expander/noise
gate that is based on RMS measurement, is presented in Fig. 7.10. The PEAK and RMS
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values are measured simultaneously. If the linear threshold of the limiter is crossed, the
logarithm of the peak signal xPEAK(n) is taken and the upper path of the limiter is used
to calculate the characteristic curve. If the limiter threshold is not crossed, the logarithm
of the RMS value is taken and one of the three lower paths is used. The additive terms in
the limiter and noise gate paths result from the static curve. After going through the range
detector, the antilogarithm is taken. The sequence f (n) is smoothed with a SMOOTH filter
in the limiter case, or weighted with corresponding attack and release times of the relevant
operating range (compressor, expander or noise gate). By limiting the maximum level, the
dynamic range is reduced. As a consequence, the overall static curve can be shifted up by
a gain factor. Figure 7.11 demonstrates this with a gain factor equal to 10 dB. This static
parameter value is directly included in the control factor g(n).
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Figure 7.11 Shifting the static curve by a gain factor.

As an example, Fig. 7.12 illustrates the input x(n), the output y(n) and the control factor
g(n) of a compressor/expander system. It is observed that signals with high amplitude are
compressed and those with low amplitude are expanded. An additional gain of 12 dB
shows the maximum value of 4 for the control factor g(n). The compressor/expander
system operates in the linear region of the static curve if the control factor is equal to
4. If the control factor is between 1 and 4, the system operates as a compressor. For
control factors lower than 1, the system works as an expander (3500 < n < 4500 and
6800 < n < 7900). The compressor is responsible for increasing the loudness of the signal,
whereas the expander increases the dynamic range for signals of small amplitude.

7.5 Realization Aspects

7.5.1 Sampling Rate Reduction

In order to reduce the computational complexity, downsampling can be carried out after
calculating the PEAK/RMS value (see Fig. 7.13). As the signals xPEAK(n) and xRMS(n) are
already band-limited, they can be directly downsampled by taking every second or fourth
value of the sequence. This downsampled signal is then processed by taking its logarithm,
calculating the static curve, taking the antilogarithm and filtering with corresponding attack
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Figure 7.12 Signals x(n), y(n) and g(n) for dynamic range control.

and release time with reduced sampling rate. The following upsampling by a factor of
4 is achieved by repeating the output value four times. This procedure is equivalent to
upsampling by a factor of 4 followed by a sample-and-hold transfer function.

The nesting and spreading of partial program modules over four sampling periods is
shown in Fig. 7.14. The modules PEAK/RMS (i.e. PEAK/RMS calculation) and MULT
(delay of input and multiplication with g(n)) are performed every input sampling period.
The number of processor cycles for PEAK/RMS and MULT are denoted by Z1 and Z3
respectively. The modules LD(X), CURVE, 2x and SMO have a maximum of Z2 processor
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Figure 7.13 Dynamic system with sampling rate reduction.

cycles and are processed consecutively in the given order. This procedure is repeated every
four sampling periods. The total number of processor cycles per sampling period for the
complete dynamics algorithm results from the sum of all three modules.
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Figure 7.14 Nesting technique.

7.5.2 Curve Approximation

Besides taking logarithms and antilogarithms, other simple operations like comparisons and
addition/multiplication occur in calculating the static curve. The logarithm of the
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PEAK/RMS value is taken as follows:

x = M · 2E, (7.32)

ld(x) = ld(M) + E. (7.33)

First, the mantissa is normalized and the exponent is determined. The function ld(M) is
then calculated by a series expansion. The exponent is simply added to the result.

The logarithmic weighting factor G and the antilogarithm 2G are given by

G = − E − M, (7.34)

2G = 2−E · 2−M. (7.35)

Here, E is a natural number and M is a fractional number. The antilogarithm 2G is calcu-
lated by expanding the function 2−M in a series and multiplying by 2−E . A reduction of
computational complexity can be achieved by directly using log and antilog tables.

7.5.3 Stereo Processing

For stereo processing, a common control factor g(n) is needed. If different control factors
are used for both channels, limiting or compressing one of the two stereo signals causes a
displacement of the stereo balance. Figure 7.15 shows a stereo dynamic system in which the
sum of the two signals is used to calculate a common control factor g(n). The following
processing steps of measuring the PEAK/RMS value, downsampling, taking logarithm,
calculating static curve, taking antilog attack and release time and upsampling with a
sample-and-hold function remain the same. The delay (DEL) in the direct path must be
the same for both channels.
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Figure 7.15 Stereo dynamic system.

7.6 Java Applet – Dynamic Range Control

The applet shown in Fig. 7.16 demonstrates dynamic range control. It is designed for a
first insight into the perceptual effects of dynamic range control of an audio signal. You
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can adjust the characteristic curve with two control points. You can choose between two
predefined audio files from our web server (audio1.wav or audio2.wav) or your own local
wav file to be processed [Gui05].

Figure 7.16 Java applet – dynamic range control.

7.7 Exercises

1. Low-pass Filtering for Envelope Detection

Generally, envelope computation is performed by low-pass filtering the input signal’s ab-
solute value or its square.

1. Sketch the block diagram of a recursive first-order low-pass H(z) = λ/[(1 − (1 −
λ)z−1)].

2. Sketch its step response. What characteristic measure of the envelope detector can
be derived from the step response and how?

3. Typically, the low-pass filter is modified to use a non-constant filter coefficient λ.
How does λ depend on the signal? Sketch the response to a rect signal of the low-
pass filter thus modified.

2. Discrete-time Specialties of Envelope Detection

Taking absolute value or squaring are non-linear operations. Therefore, care must be taken
when using them in discrete-time systems as they introduce harmonics the frequency of
which may violate the Nyquist bound. This can lead to unexpected results, as a simple
example illustrates. Consider the input signal x(n) = sin(π

2 n + ϕ), ϕ ∈ [0, 2π].
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1. Sketch x(n), |x(n)| and x2(n) for different values of ϕ.

2. Determine the value of the envelope after perfect low-pass filtering, i.e. averaging,
|x(n)|. Note: As the input signal is periodical, it is sufficient to consider one pe-
riod, e.g.

x̄ = 1

4

3∑
n=0

|x(n)|.

3. Similarly, determine the value of the envelope after averaging x2(n).

3. Dynamic Range Processors

Sketch the characteristic curves mapping input level to output level and input level to gain
for and describe briefly the application of:

1. limiter;

2. compressor;

3. expander;

4. noise gate.
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Chapter 8

Sampling Rate Conversion

Several different sampling rates are established for digital audio applications. For broad-
casting, professional and consumer audio, sampling rates of 32, 48 and 44.1 kHz are used.
Moreover, other sampling rates are derived from different frame rates for film and video. In
connecting systems with different uncoupled sampling rates, there is a need for sampling
rate conversion. In this chapter, synchronous sampling rate conversion with rational factor
L/M for coupled clock rates and asynchronous sampling rate conversion will be discussed
where the different sampling rates are not synchronized with each other.

8.1 Basics

Sampling rate conversion consists out of upsampling and downsampling and anti-imaging
and anti-aliasing filtering [Cro83, Vai93, Fli00, Opp99]. The discrete-time Fourier trans-
form of the sampled signal x(n) with sampling frequency fS = 1/T (ωS = 2πfS) is given
by

X(ej�) = 1

T

∞∑
k=−∞

Xa

(
jω + jk

2π

T︸︷︷︸
ωS

)
, � = ωT, (8.1)

with the Fourier transform Xa(jω) of the continuous-time signal x(t). For ideal sampling
the condition

X(ej�) = 1

T
Xa(jω), |�| ≤ π, (8.2)

holds.

8.1.1 Upsampling and Anti-imaging Filtering

For upsampling the signal
x(n) ◦—• X(ej�) (8.3)

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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by a factor L between consecutive samples L − 1 zero samples will be included (see
Fig. 8.1). This leads to the upsampled signal

w(m) =
{

x
(m

L

)
, m = 0, ±L, ±2L, . . . ,

0, otherwise,
(8.4)

with sampling frequency f ′
S = 1/T ′ = L · fS = L/T (�′ = �/L) and the corresponding

Fourier transform

W(ej�′
) =

∞∑
m=−∞

w(m) e−jm�′ =
∞∑

m=−∞
x(m) e−jmL�′ = X(ejL�′

). (8.5)

The suppression of the image spectra is achieved by anti-imaging filtering of w(m) with
h(m), such that the output signal is given by

y(m) = w(m) ∗ h(m), (8.6)

Y (ej�′
) = H(ej�′

) · X(ej�′L). (8.7)

To adjust the signal power in the base-band the Fourier transform of the impulse-response

H(ej�′
) =

{
L, |�′| ≤ π/L,

0, otherwise,
(8.8)

needs a gain factor L in the pass-band, such that the output signal y(m) has the Fourier
transform given by

Y (ej�′
) = LX(ej�′L) (8.9)

= L
1

T

∞∑
k=−∞

Xa

(
jω + jLk

2π

T

)
︸ ︷︷ ︸

with (8.1) and (8.5)

(8.10)

= L
1

LT ′
∞∑

k=−∞
Xa

(
jω + jLk

2π

LT ′

)
(8.11)

= 1

T ′
∞∑

k=−∞
Xa

(
jω + jk

2π

T ′

)
︸ ︷︷ ︸
spectrum of signal with f ′

S=LfS

. (8.12)

The output signal represents the sampling of the input x(t) with sampling frequency f ′
S =

LfS .

8.1.2 Downsampling and Anti-aliasing Filtering

For downsampling a signal x(n) by M the signal has to be band-limited to π/M in order to
avoid aliasing after the downsampling operation (see Fig. 8.2). Band-limiting is achieved
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x(n) y(m)L h(m)
w(m)

� �= T

fS=1/T f ’S

� � � �'= T'= T/L= /L

f ’S=1/T’=LfS

W(ej ’)=� X(ejL ’)�

�’ L=3

X(ej )�

�

2 /3� ��4 /3��/3
� �’= /L

Y(ej ')�

2� 6�4�

�

�

� 2��/3 �’

2 /L� 6 /L�4 /L�

|H |(ej ’)�

x(n)

m0 1 2 3 4 5 6 7 8 9

n0 1 2 3

w(m)

y(m)

m0 1 2 3 4 5 6 7 8 9

3 L

�/L

1/T

L/T=1/T’

1/T

Figure 8.1 Upsampling by L and anti-imaging filtering in time and frequency domain.

by filtering with H(ej�) according to

w(m) = x(m) ∗ h(m), (8.13)

W(ej�) = X(ej�) · H(ej�), (8.14)

H(ej�) =
{

1, |�| ≤ π/M,

0, otherwise.
(8.15)

Downsampling of w(m) is performed by taking every Mth sample, which leads to the
output signal

y(n) = w(Mn) (8.16)

with the Fourier transform

Y (ej�′
) = 1

M

M−1∑
l=0

W(ej(�′−2πl)/M)). (8.17)

For the base-band spectrum (|�′| ≤ π and l = 0) we get

Y (ej�′
) = 1

M
H(ej�′/M) · X(ej�′/M) = 1

M
X(ej�′/M), |�′| ≤ π, (8.18)
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and for the Fourier transform of the output signal we can derive

Y (ej�′
) = 1

M
X(ej�′/M) = 1

M

1

T

∞∑
k=−∞

Xa

(
jω + jk

2π

MT

)
︸ ︷︷ ︸

with (8.1)

(8.19)

= 1

T ′
∞∑

k=−∞
Xa

(
jω + jk

2π

T ′

)
︸ ︷︷ ︸

spectrum of signal with f ′
S=fS/M

, (8.20)

which represents a sampled signal y(n) with f ′
S = fS/M .

fS

x(m) y(n)Mh(m)
w(m)

� �= T

fS=1/T f ’S=1/T’=fS/M

� � � ��’= T’= TM=

M�M2 /3� M��M4 /3�M /3� � �’= M
M=3

X(ej )�

Y(ej ’)�

W(ej )�

�’

|H |(ej )�

�2 /3� ��4 /3��/3 �

�2 /3� ��4 /3��/3

2� 6�4��

y(n)

m0 1 2 3 4 5 6 7 8 9

n0 1 2 3

w(m)

x(m)

m0 1 2 3 4 5 6 7 8 9

3

1

�

1/T

1/MT=1/T’

1/T

Figure 8.2 Anti-aliasing filtering and downsampling by M in time and frequency domain.

8.2 Synchronous Conversion

Sampling rate conversion for coupled sampling rates by a rational factor L/M can be
performed by the system shown in Fig. 8.3. After upsampling by a factor L, anti-imaging
filtering at LfS is carried out, followed by downsampling by factor M . Since after up-
sampling and filtering only every Mth sample is used, it is possible to develop efficient
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algorithms that reduce complexity. In this respect two methods are in use: one is based on
a time-domain interpretation [Cro83] and the other [Hsi87] uses Z-domain fundamentals.
Owing to its computational efficiency, only the method in the Z-domain will be considered.

x(n)

fS

ML
w(k)

LfS

v(k)

LfS
y(m)

fSO
=(L/M)fS

h(k)

Figure 8.3 Sampling rate conversion by factor L/M .

Starting with the finite impulse response h(n) of length N and its Z-transform

H(z) =
N−1∑
n=0

h(n)z−n, (8.21)

the polyphase representation [Cro83, Vai93, Fli00] with M components can be expressed as

H(z) =
M−1∑
k=0

z−kEk(z
M) (8.22)

with
ek(n) = h(nM + k), k = 0, 1, . . . , M − 1, (8.23)

or

H(z) =
M−1∑
k=0

z−(M−1−k)Rk(z
M) (8.24)

with
rk(n) = h(nM − k), k = 0, 1, . . . , M − 1. (8.25)

The polyphase decomposition as given in (8.22) and (8.24) is referred to as type 1 and 2, re-
spectively. The type 1 polyphase decomposition corresponds to a commutator model in the
anti-clockwise direction whereas the type 2 is in the clockwise direction. The relationship
between R(z) and E(z) is described by

Rk(z) = EM−1−k(z). (8.26)

With the help of the identities [Vai93] shown in Fig. 8.4 and the decomposition (Euclid’s
theorem)

z−1 = z−pLzqM, (8.27)

it is possible to move the inner delay elements of Fig. 8.5. Equation (8.27) is valid if M

and L are prime numbers. In a cascade of upsampling and downsampling, the order of
functional blocks can be exchanged (see Fig. 8.5b).

The use of polyphase decomposition can be demonstrated with the help of an example
for L = 2 and M = 3. This implies a sampling rate conversion from 48 kHz to 32 kHz.
Figures 8.6 and 8.7 show two different solutions for polyphase decomposition of sam-
pling rate conversion by 2/3. Further decompositions of the upsampling decomposition of
Fig. 8.7 are demonstrated in Fig. 8.8. First, interpolation is implemented with a polyphase
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MH(z )M M H(z)

L H(z )L H(z) L

Figure 8.4 Identities for sampling rate conversion.

x(n) ML y(m)z-pL+qM

a)

x(n) z-p L M z+q y(m)

L Mx(n) y(m)

LMx(n) y(m)

b)

fS LfS fSO
=(L/M)fS

fS LfS fSO
=(L/M)fS

fS LfS fSO
=(L/M)fS

fS fS/M fSO
=(L/M)fS

Figure 8.5 Decomposition in accordance with Euclid’s theorem.

decomposition and the delay z−1 is decomposed to z−1 = z−2z3. Then, the downsampler
of factor 3 is moved through the adder into the two paths (Fig. 8.8b) and the delays are
moved according to the identities of Fig. 8.4. In Fig. 8.8c, the upsampler is exchanged with
the downsampler, and in a final step (Fig. 8.8d) another polyphase decomposition of E0(z)

and E1(z) is carried out. The actual filter operations E0k(z) and E1k(z) with k = 0, 1, 2 are
performed at 1

3 of the input sampling rate.

8.3 Asynchronous Conversion

Plesiochronous systems consist of partial systems with different and uncoupled sampling
rates. Sampling rate conversion between such systems can be achieved through a DA
conversion with the sampling rate of the first system followed by an AD conversion with the
sampling rate of the second system. A digital approximation of this approach is made with
a multirate system [Lag81, Lag82a, Lag82b, Lag82c, Lag83, Ram82, Ram84]. Figure 8.9a
shows a system for increasing the sampling rate by a factor L followed by an anti-imaging
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x(n) 32 y(m)H(z)

x(n) 2 y(m)3 E (z)0

3

3

E (z)1

E (z)2

z-1

z-1

Figure 8.6 Polyphase decomposition for downsampling L/M = 2/3.

x(n) 32 y(m)H(z)

x(n) 2 y(m)3E (z)0

E (z)1

z-1

2

Figure 8.7 Polyphase decomposition for upsampling L/M = 2/3.

filter H(z) and a resampling of the interpolated signal y(k). The samples y(k) are held
for a clock period (see Fig. 8.9c) and then sampled with output clock period TSO = 1/fSO .
The interpolation sampling rate must be increased sufficiently that the difference of two
consecutive samples y(k) is smaller than the quantization step Q. The sample-and-hold
function applied to y(k) suppresses the spectral images at multiples of LfS (see Fig. 8.9b).
The signal obtained is a band-limited continuous-time signal which can be sampled with
output sampling rate fSO .

For the calculation of the necessary oversampling rate, the problem is considered in
the frequency domain. The sinc function of a sample-and-hold system (see Fig. 8.9b) at
frequency f̃ = (L − 1

2 )fS is given by

E(f̃ ) =
sin
(

πf̃
LfS

)
πf̃
LfS

=
sin
(

π(L− 1
2 )fS

LfS

)
π(L− 1

2 )fS

LfS

= sin
(
π − π

2L

)
π − π

2L

. (8.28)
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x(n) 2 y(m)3E (z)0
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x(n) 2E (z)0
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x(n) 2E (z)0
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b)

c)
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z-1

d)
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3 E (z)00

3 E (z)01
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3 E (z)02

2 y(m)

z-1

3 E (z)10

3 E (z)11

z-1

3 E (z)12

2

z-1z1

Figure 8.8 Sampling rate conversion by factor 2/3.

With sin(α − β) = sin(α) cos(β) − cos(α) sin(β) we derive

E(f̃ ) = sin
(

π
2L

)
π
(
1 − 1

2L

) ≈ π/2L

π
(
1 − 1

2L

) ≈ 1

2L − 1
≈ 1

2L
. (8.29)
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x(n) Rect

f

sin( f/Lf ) π S

Y(f)

y(k)

k k +1
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k+3k+2
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c)

fS
fSO

f
~

H(z)

y(t)

y(m)
y(k) y(t)

LfSfS

LfS

L

Figure 8.9 Approximation of DA/AD conversions.

This value of (8.29) should be lower than Q
2 and allows the computation of the interpolation

factor L. For a given word-length w and quantization step Q, the necessary interpolation
rate L is calculated by

Q

2
≥ 1

2L
, (8.30)

2−(w−1)

2
≥ 1

2L
(8.31)

↪→ L ≥ 2w−1. (8.32)

For a linear interpolation between upsampled samples y(k), we can derive

E(f̃ ) =
sin2
(

πf̃
LfS

)
(

πf̃
LfS

)2
(8.33)

=
sin2
(

π(L− 1
2 )fS

LfS

)
(

π(L− 1
2 )fS

LfS

)2
(8.34)

≈ 1

(2L)2 . (8.35)
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With this it is possible to reduce the necessary interpolation rate to

L1 ≥ 2w/2−1. (8.36)

Figure 8.10 demonstrates this with a two-stage block diagram. First, interpolation up to a
sampling rate L1fS is performed by conventional filtering. In a second stage upsampling by
factor L2 is done by linear interpolation. The two-stage approach must satisfy the sampling
rate LfS = (L1L2)fS .

The choice of the interpolation algorithm in the second stage enables the reduction of
the first oversampling factor. More details are discussed in Section 8.2.2.

y(m)

y(k)

Rect
fSO

y(t)

x(n) H (z)1 H (z)2L1
L2

Figure 8.10 Linear interpolation before virtual sample-and-hold function.

8.3.1 Single-stage Methods

Direct conversion methods implement the block diagram [Lag83, Smi84, Par90, Par91a,
Par91b, Ada92, Ada93] shown in Fig. 8.9a. The calculation of a discrete sample on an
output grid of sampling rate fSO from samples x(n) at sampling rate fSI can be written as

DFT[x(n − α)] = X(ej�) e−jα� = X(ej�)Hα(ej�), (8.37)

where 0 ≤ α < 1. With the transfer function

Hα(ej�) = e−jα� (8.38)

and the properties

H(ej�) =
{

1, 0 ≤ |�| ≤ �c,

0, �c < |�| < π,
(8.39)

the impulse response is given by

hα(n) = h(n − α) = �c

π

sin[�c(n − α)]
�c(n − α)

. (8.40)

From (8.37) we can express the delayed signal

x(n − α) =
∞∑

m=−∞
x(m)h(n − α − m) (8.41)

=
∞∑

m=−∞
x(m)

�c

π

sin[�c(n − α − m)]
�c(n − α − m)

(8.42)

as the convolution between x(n) and h(n − α). Figure 8.11 illustrates this convolution in
the time domain for a fixed α. Figure 8.12 shows the coefficients h(n − αi) for discrete
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Figure 8.11 Convolution sum (8.42) in the time domain.
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Figure 8.12 Convolution sum (8.42) for different αi .

αi (i = 0, . . . , 3) which are obtained from the intersection of the sinc function with the
discrete samples x(n).

In order to limit the convolution sum, the impulse response is windowed, which gives

hW (n − αi) = w(n)
�c

π

sin[�c(n − αi)]
�c(n − αi)

, n = 0, . . . , 2M. (8.43)

From this, the sample estimate

x̂(n − αi) =
M∑

m=−M

x(m)hW(n − αi − m) (8.44)

results. A graphical interpretation of the time-variant impulse response which depends on
αi is shown in Fig. 8.13. The discrete segmentation between two input samples into N

intervals leads to N partial impulse responses of length 2M + 1.
If the output sampling rate is smaller than the input sampling rate (fSO < fSI ), band-

limiting (anti-aliasing) to the output sampling rate has to be done. This can be achieved
with factor β = fSO /fSI and leads, with the scaling theorem of the Fourier transform, to

h(n − α) = β�c

π

sin[β�c(n − α)]
β�c(n − α)

. (8.45)
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This time-scaling of the impulse response has the consequence that the number of coeffi-
cients of the time-variant partial impulse responses is increased. The number of required
states also increases. Figure 8.14 shows the time-scaled impulse response and elucidates
the increase in the number M of the coefficients.

=0.25

=0.5

=0.75

=0

-M M0

Figure 8.13 Sinc function and different impulse responses.

=0.25

=0.5

=0.75

=0

-M M0

Figure 8.14 Time-scaled impulse response.

8.3.2 Multistage Methods

The basis of a multistage conversion method [Lag81, Lag82, Kat85, Kat86] is shown
in Fig. 8.15a and will be described in the frequency domain as shown in Fig. 8.15b–d.
Increasing the sampling rate up to LfS before the sample-and-hold function is done in four
stages. In the first two stages, the sampling rate is increased by a factor of 2 followed by
an anti-imaging filter (see Fig. 8.15b,c), which leads to a four times oversampled spectrum
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(Fig. 8.15d). In the third stage, the signal is upsampled by a factor of 32 and the image
spectra are suppressed (see Fig. 8.15d,e). In the fourth stage (Fig. 8.15e) the signal is
upsampled to a sampling rate of LfS by a factor of 256 and a linear interpolator. The
sinc2 function of the linear interpolator suppresses the images at multiples of 128fS up to
the spectrum at LfS . The virtual sample-and-hold function is shown in Fig. 8.15f, where
resampling at the output sampling rate is performed. A direct conversion of this kind of
cascaded interpolation structure requires anti-imaging filtering after every upsampling with
the corresponding sampling rate. Although the necessary filter order decreases owing to
a decrease in requirements for filter design, an implementation of the filters in the third
and fourth stages is not possible directly. Following a suggestion by Lagadec [Lag82c],
the measurement of the ratio of input to output rate is used to control the polyphase
filters in the third and fourth stages (see Fig. 8.16a, CON = control) to reduce complexity.
Figures 8.16b–d illustrate an interpretation in the time domain. Figure 8.16b shows the
interpolation of three samples between two input samples x(n) with the help of the first and
second interpolation stage. The abscissa represents the intervals of the input sampling rate
and the sampling rate is increased by factor of 4. In Fig. 8.16c the four times oversampled
signal is shown. The abscissa shows the four times oversampled output grid. It is assumed
that output sample y(m = 0) and input sample x(n = 0) are identical. The output sample
y(m = 1) is now determined in such a form that with the interpolator in the third stage only
two polyphase filters just before and after the output sample need to be calculated. Hence,
only two out of a total of 31 possible polyphase filters are calculated in the third stage.
Figure 8.16d shows these two polyphase output samples. Between these two samples, the
output sample y(m = 1) is obtained with a linear interpolation on a grid of 255 values.

Instead of the third and fourth stages, special interpolation methods can be used to cal-
culate the output y(m) directly from the four times oversampled input signal (see Fig. 8.17)
[Sti91, Cuc91, Liu92]. The upsampling factor L3 = 2w−3 for the last stage is calculated
according to L = 2w−1 = L1L2L3 = 22L3. Section 8.4 is devoted to different interpolation
methods which allow a real-time calculation of filter coefficients. This can be interpreted
as time-variant filters in which the filter coefficients are derived from the ratio of sampling
rates. The calculation of one filter coefficient set for the output sample at the output rate
is done by measuring the ratio of input to output sampling rate as described in the next
section.

8.3.3 Control of Interpolation Filters

The measurement of the ratio of input and output sampling rate is used for controlling the
interpolation filters [Lag82a]. By increasing the sampling rate by a factor of L the input
sampling period is divided into L = 2w−1 = 215 parts for a signal word-length of w = 16
bits. The time instant of the output sample is calculated on this grid with the help of the
measured ratio of sampling periods TSO/TSI as follows.

A counter is clocked with LfSI
and reset by every new input sampling clock. A saw-

tooth curve of the counter output versus time is obtained as shown in Fig. 8.18. The
counter runs from 0 to L − 1 during one input sampling period. The output sampling period
TSO starts at time ti−2, which corresponds to counter output zi−2, and stops at time ti−1,
with counter output zi−1. The difference between both counter measurements allows the
calculation of the output sampling period TSO with a resolution of LfSI

.
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Figure 8.15 Multistage conversion – frequency-domain interpretation.

The new counter measurement is added to the difference of previous counter measure-
ments. As a result, the new counter measurement is obtained as

ti = (ti−1 + TSO ) ⊕ TSI . (8.46)

The modulo operation can be carried out with an accumulator of word-length w − 1 = 15.
The resulting time ti determines the time instant of the output sample at the output sampling
rate and therefore the choice of the polyphase filter in a single-stage conversion or the time
instant for a multistage conversion.
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Figure 8.16 Time-domain interpretation.
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2 H (z)1 2 H (z)2 2
w-3

fSO

y(m)
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Figure 8.17 Sampling rate conversion with interpolation for calculating coefficients of a time-variant
interpolation filter.

The measurement of TSO /TSI is illustrated in Fig. 8.19:

• The input sampling rate fSI is increased to MZfSI using a frequency multiplier
where MZ = 2w. This input clock increase by the factor MZ triggers a w-bit counter.
The counter output z is evaluated every MO output sampling periods.

• Counting of MO output sampling periods.

• Simultaneous counting of the MI input sampling periods.
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Figure 8.19 Measurement of TSO
/TSI

.

The time intervals d1 and d2 (see Fig. 8.19) are given by

d1 = MITSI + z − z0

MZ

TSI =
(

MI + z − z0

MZ

)
TSI , (8.47)

d2 = MOTSO , (8.48)

and with the requirement d1 = d2 we can write

MOTSO =
(

MI + z − z0

MZ

)
TSI

TSO

TSI

= MI + (z − z0)/MZ

MO

= MZMI + (z − z0)

MZMO

. (8.49)

• Example 1: w = 0 → MZ = 1
TSO

TSI

= MI

215 (8.50)

With a precision of 15 bits, the averaging number is chosen as MO = 215 and the
number MI has to be determined.
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• Example 2: w = 8 → MZ = 28

TSO

TSI

= 28MI + (z − z0)

2827
(8.51)

With a precision of 15 bits, the averaging number is chosen as MO = 27 and the
number MI and the counter outputs have to be determined.

The sampling rates at the input and output of a sampling rate converter can be calculated
by evaluating the 8-bit increment of the counter for each output clock with

z = TSO

TSI

MZ = fSI

fSO

256, (8.52)

as seen from Table 8.1.

Table 8.1 Counter increments for different sampling rate conversions.

Conversion/kHz 8-bit counter increment

32 → 48 170
44.1 → 48 235
32 → 44.1 185
48 → 44.1 278
48 → 32 384
44.1 → 32 352

8.4 Interpolation Methods

In the following sections, special interpolation methods are discussed. These methods
enable the calculation of time-variant filter coefficients for sampling rate conversion and
need an oversampled input sequence as well as the time instant of the output sample. A
convolution of the oversampled input sequence with time-variant filter coefficients gives the
output sample at the output sampling rate. This real-time computation of filter coefficients
is not based on popular filter design methods. On the contrary, methods are presented for
calculating filter coefficient sets for every input clock cycle where the filter coefficients
are derived from the distance of output samples to the time grid of the oversampled input
sequence.

8.4.1 Polynomial Interpolation

The aim of a polynomial interpolation [Liu92] is to determine a polynomial

pN(x) =
N∑

i=0

aix
i (8.53)
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of N th order representing exactly a function f (x) at N + 1 uniformly spaced xi , i.e.
pN(xi) = f (xi) = yi for i = 0, . . . , N . This can be written as a set of linear equations


1 x0 x2

0 · · · xN
0

1 x1 x2
1 · · · xN

1
...

...
...

...

1 xN xN
N · · · xN

N






a0
a1
...

aN


=




y0
y1
...

yN


 . (8.54)

The polynomial coefficients ai as functions of y0, . . . , yN are obtained with the help of
Cramer’s rule according to

ai =

ith column∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 · · · y0 · · · xN

0

1 x1 x2
1 · · · y1 · · · xN

1
...

...
...

... · · · ...

1 xN x2
N · · · yN · · · xN

N

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
1 x0 x2

0 · · · xN
0

1 x1 x2
1 · · · xN

1
...

...
...

...

1 xN x2
N · · · xN

N

∣∣∣∣∣∣∣∣∣

, i = 0, 1, . . . , N. (8.55)

For uniformly spaced xi = i with i = 0, 1, . . . , N the interpolation of an output sample
with distance α gives

y(n + α) =
N∑

i=0

ai(n + α)i . (8.56)

In order to determine the relationship between the output sample y(n + α) and yi , a set of
time-variant coefficients ci needs to be determined such that

y(n + α) =
N/2∑

i=−N/2

ci(α)y(n + i). (8.57)

The calculation of time-variant coefficients ci(α) will be illustrated by an example.

Example: Figure 8.20 shows the interpolation of an output sample of distance α with
N = 2 and using three samples which can be written as

y(n + α) =
2∑

i=0

ai(n + α)i . (8.58)
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Figure 8.20 Polynomial interpolation with three samples.

The samples y(n + i), with i = −1, 0, 1, can be expressed as

y(n + 1) =
2∑

i=0

ai(n + 1)i, α = 1,

y(n) =
2∑

i=0

ain
i , α = 0,

y(n − 1) =
2∑

i=0

ai(n − 1)i, α = −1, (8.59)

or in matrix notation
1 (n + 1) (n + 1)2

1 n n2

1 (n − 1) (n − 1)2




a0

a1
a2


=


y(n + 1)

y(n)

y(n − 1)


 . (8.60)

The coefficients ai as functions of yi are then given by


a0

a1
a2


=




n(n − 1)

2
1 − n2 n(n + 1)

2

−2n − 1

2
2n −2n + 1

2
1

2
−1

1

2




y(n + 1)

y(n)

y(n − 1)


 , (8.61)

such that

y(n + α) = a0 + a1(n + α) + a2(n + α)2 (8.62)

is valid. The output sample y(n + α) can be written as

y(n + α) =
1∑

i=−1

ci(α)y(n + i)

= c−1y(n − 1) + c0y(n) + c1y(n + 1). (8.63)
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Equation (8.62) with ai from (8.61) leads to

y(n + α) =
[

1

2
y(n + 1) − y(n) + 1

2
y(n − 1)

]
(n + α)2

+
[
−2n − 1

2
y(n + 1) + 2ny(n) − 2n + 1

2
y(n − 1)

]
(n + α)

+ n(n − 1)

2
y(n + 1) + (1 − n2)y(n) + n(n + 1)

2
y(n − 1). (8.64)

Comparing the coefficients from (8.63) and (8.64) for n = 0 gives the coefficients

c−1 = 1
2α(α − 1),

c0 = −(α − 1)(α + 1) = 1 − α2,

c1 = 1
2α(α + 1).

8.4.2 Lagrange Interpolation

Lagrange interpolation for N + 1 samples makes use of the polynomials li (x) which have
the following properties (see Fig. 8.21):

li(xk) = δik =
{

1, i = k,

0, elsewhere.
(8.65)

Based on the zeros of the polynomial li(x), it follows that

li(x) = ai(x − x0) · · · (x − xi−1)(x − xi+1) · · · (x − xN). (8.66)

With li(xi) = 1 the coefficients are given by

ai(xi) = 1

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xN)
. (8.67)

The interpolation polynomial is expressed as

pN(x) =
N∑

i=0

li (x)yi = l0(x)y0 + · · · + lN(x)yN. (8.68)

With a =∏N
j=0(x − xj ), (8.66) can be written as

li (x) = ai
a

x − xi

= 1∏N
j=0,j �=i xi − xj

∏N
j=0 x − xj

x − xi

=
N∏

j=0,j �=i

x − xj

xi − xj

. (8.69)

For uniformly spaced samples
xi = x0 + ih (8.70)

and with the new variable α as given by

x = x0 + αh, (8.71)



8.4 Interpolation Methods 261

we get
x − xj

xi − xj
= (x0 + αh) − (x0 + jh)

(x0 + ih) − (x0 + jh)
= α − j

i − j
(8.72)

and hence

li(x(α)) =
N∏

j=0,j �=i

α − j

i − j
. (8.73)

For even N we can write

li (x(α)) =
N/2∏

j=−N/2,j �=i

α − j

i − j
, (8.74)

and for odd N ,

li(x(α)) =
N+1/2∏

j=−N−1/2,j �=i

α − j

i − j
. (8.75)

The interpolation of an output sample is given by

y(n + α) =
N/2∑

i=−N/2

li (α)y(n + i). (8.76)
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Figure 8.21 Lagrange polynomial.

Example: For N = 2, 3 samples,

l−1(x(α)) =
1∏

j=−1,j �=−1

α − j

−1 − j
= 1

2
α(α − 1),

l0(x(α)) =
1∏

j=−1,j �=0

α − j

0 − j
= −(α − 1)(α + 1) = 1 − α2,

l1(x(α)) =
1∏

j=−1,j �=1

α − j

1 − j
= 1

2
α(α + 1).

8.4.3 Spline Interpolation

The interpolation using piecewise defined functions that only exist over finite intervals
is called spline interpolation [Cuc91]. The goal is to compute the sample y(n + α) =∑N/2

i=−N/2 bN
i (α)y(n + i) from weighted samples y(n + i).
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A B-spline MN
k (x) of N th order using m + 1 samples is defined in the interval [xk, . . . ,

xk+m] by

MN
k (x) =

k+m∑
i=k

aiφi(x) (8.77)

with the truncated power functions

φi(x) = (x − xi)
N+ =

{
0, x < xi,

(x − xi)
N , x ≥ xi.

(8.78)

In the following MN
0 (x) =∑m

i=0 aiφi(x) will be considered for k = 0 where MN
0 (x) = 0

for x < x0 and MN
0 (x) = 0 for x ≥ xm. Figure 8.22 shows the truncated power functions

and the B-spline of N th order. With the definition of the truncated power functions we can
write

MN
0 (x) = a0φ0(x) + a1φ1(x) + · · · + amφm(x)

= a0(x − x0)
N+ + a1(x − x1)

N+ + · · · + am(x − xm)N+ , (8.79)

and after some calculations we get

MN
0 (x) = a0(x

N
0 + c1x

N−1
0 x + · · · + cN−1x0x

N−1 + xN)

+ a1(x
N
1 + c1x

N−1
1 x + · · · + cN−1x1x

N−1 + xN)

...

+ am(xN
m + c1x

N−1
m x + · · · + cN−1xmxN−1 + xN). (8.80)
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Figure 8.22 Truncated power functions and the B-spline of N th order.

With the condition MN
0 (x) = 0 for x ≥ xm, the following set of linear equations can be

written with (8.80) and the coefficients of the powers of x:


1 1 · · · 1
x0 x1 · · · xm

x2
0 x2

1 · · · x2
m

...
...

...

xN
0 xN

1 · · · xN
m







a0
a1
a2
...

am


=




0
0
0
...

0


 . (8.81)
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The homogeneous set of linear equations has non-trivial solutions for m > N . The mini-
mum requirement results in m = N + 1. For m = N + 1, the coefficients [Boe93] can be
obtained as follows:

ai =

ith column∣∣∣∣∣∣∣∣∣
1 1 1 · · · 0 · · · 1
x0 x1 x2 · · · 0 · · · xN+1
...

...
...

...
...

xN
0 xN

1 xN
2 · · · 0 · · · xN

N+1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
x0 x1 x2 · · · xN+1
...

...
...

...

xN+1
0 xN+1

1 xN+1
2 · · · xN+1

N+1

∣∣∣∣∣∣∣∣∣

, i = 0, 1, . . . , N + 1. (8.82)

Setting the ith column of the determinant in the numerator of (8.82) equal to zero cor-
responds to deleting the column. Computing both determinants of Vandermonde matrices
[Bar90] and division leads to the coefficients

ai = 1∏N+1
j=0,i �=j (xi − xj )

(8.83)

and hence

MN
0 (x) =

N+1∑
i=0

(x − xi)
N+∏N+1

j=0,i �=j (xi − xj )
. (8.84)

For some k we obtain

MN
k (x) =

k+N+1∑
i=k

(x − xi)
N+∏N+1

j=0,i �=j (xi − xj )
. (8.85)

Since the functions MN
k (x) decrease with increasing N , a normalization of the form NN

k (x)

= (xk+N+1 − xk)M
N
k is done, such that for equidistant samples we get

NN
k (x) = (N + 1) · MN

k (x). (8.86)

The next example illustrates the computation of B-splines.
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Example: For N = 3, m = 4, and five samples the coefficients according to (8.83) are given
by

a0 = 1

(x0 − x4)(x0 − x3)(x0 − x2)(x0 − x1)
,

a1 = 1

(x1 − x4)(x1 − x3)(x1 − x2)(x1 − x0)
,

a2 = 1

(x2 − x4)(x2 − x3)(x2 − x1)(x2 − x0)
,

a3 = 1

(x3 − x4)(x3 − x2)(x3 − x1)(x3 − x0)
,

a4 = 1

(x4 − x3)(x4 − x2)(x2 − x1)(x3 − x0)
.

Figure 8.23a,b shows the truncated power functions and their summation for calculating
N3

0 (x). In Fig. 8.23c the horizontally shifted N3
i (x) are depicted.

0 5

1

0

-1

N0
3(x)a

0 5

1

0

-1

a1

a4

a3

a2

N0
3(x) N1

3(x) N2
3(x) N3

3(x)
1

-1
0 2 4 6 8

0

N4
3(x)

a)

b)

c)

Figure 8.23 Third-order B-spline (N = 3, m = 4, 5 samples).
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Figure 8.24 Interpolation with B-splines of second and third order.

A linear combination of B-splines is called a spline. Figure 8.24 shows the interpolation
of sample y(n + α) for splines of second and third order. The shifted B-splines NN

i (x) are
evaluated at the vertical line representing the distance α. With sample y(n) and the normal-
ized B-splines NN

i (x), the second- and third-order splines are respectively expressed as

y(n + α) =
1∑

i=−1

y(n + i)N2
n−1+i (α) (8.87)

and

y(n + α) =
2∑

i=−1

y(n + i)N3
n−2+i(α). (8.88)

The computation of a second-order B-spline at the sample index α is based on the
symmetry properties of the B-spline, as depicted in Fig. 8.25. With (8.77), (8.86) and the
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symmetry properties shown in Fig. 8.25, the B-splines can be written in the form

N2
2 (α) = N2

0 (α) = 3
3∑

i=0

ai(α − xi)
2+,

N2
1 (1 + α) = N2

0 (1 + α) = 3
3∑

i=0

ai(1 + α − xi)
2+,

N2
0 (2 + α) = N2

0 (1 − α) = 3
3∑

i=0

ai(2 + α − xi)
2+ = 3

3∑
i=0

ai(1 − α − xi)
2+. (8.89)

With (8.83) we get the coefficients

a0 = 1

(0 − 1)(−2)(−3)
= −1

6
,

a1 = 1

(1 − 0)(1 − 2)(1 − 3)
= 1

2
,

a2 = 1

(2 − 0)(2 − 1)(2 − 3)
= −1

2
, (8.90)

and thus

N2
2 (α) = 3[a0α

2] = − 1
2α2,

N2
1 (α) = 3[a0(1 + α)2 + a1α

2] = − 1
2 (1 + α)2 + 3

2α2,

N2
0 (α) = 3[a0(1 − α)2] = − 1

2 (1 − α)2. (8.91)

�
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Figure 8.25 Exploiting the symmetry properties of a second-order B-spline.

Owing to the symmetrical properties of the B-splines, the time-variant coefficients of
the second-order B-spline can be derived as

N2
2 (α) = h(1) = − 1

2α2, (8.92)

N2
1 (α) = h(2) = − 1

2 (1 + α)2 + 3
2α2, (8.93)

N2
0 (α) = h(3) = − 1

2 (1 − α)2. (8.94)
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In the same way the time-variant coefficients of a third-order B-spline are given by

N3
3 (α) = h(1) = 1

6α3, (8.95)

N3
2 (α) = h(2) = 1

6 (1 + α)3 − 2
3α3, (8.96)

N3
1 (α) = h(3) = 1

6 (2 − α)3 − 2
3 (1 − α)3, (8.97)

N3
0 (α) = h(4) = 1

6 (1 − α)3. (8.98)

Higher-order B-splines are given by

y(n + α) =
2∑

i=−2

y(n + i)N4
n−2+i (α), (8.99)

y(n + α) =
3∑

i=−2

y(n + i)N5
n−3+i (α), (8.100)

y(n + α) =
3∑

i=−3

y(n + i)N6
n−3+i (α). (8.101)

Similar sets of coefficients can be derived here as well. Figure 8.26 illustrates this for
fourth- and sixth-order B-splines.

Generally, for even orders we get

y(n + α) =
N/2∑

i=−N/2

NN
N/2+i (α)y(n + i), (8.102)

and for odd orders

y(n + α) =
(N+1)/2∑

i=−(N−1)/2

NN
(N−1)/2+i(α)y(n + i). (8.103)

For the application of interpolation the properties in the frequency domain are important.
The zero-order B-spline is given by

N0
0 (x) =

1∑
i=0

aiφi(x) =



0, x < 0,

1, 0 ≤ x < 1,

0, x ≥ 1,

(8.104)

and the Fourier transform gives the sinc function in the frequency domain. The first-order
B-spline given by

N1
0 (x) = 2

2∑
i=0

aiφi(x) =




0, x < 0,

1

2
x, 0 ≤ x < 1,

1 − 1

2
x, 1 ≤ x < 2,

0, x ≥ 2,

(8.105)



268 Sampling Rate Conversion

x0 x7 x8x3x2 x4 x6

y(n+ )�

�

xn-3 xn-2 xn-1 xn xn+1 xn+2 xn+3 xn+4

y(n+ )�
�

xn-3 xn-2 xn-1 xn xn+1 xn+2 xn+3

N (x)4
4N0

4(x) N (x)1
4

N (x)6
6N (x)0

6 N (x)1
6

x

x
x1 x5

N (x)2
4 N (x)3

4

xn+5

xn-4

N (x)2
6 N (x)3

6 N (x)4
6 N (x)5

6

x9

x0 x7 x8x3x2 x4 x6x1 x5 x9

Figure 8.26 Interpolation with B-splines of fourth and sixth order.

leads to a sinc2 function in the frequency domain. Higher-order B-splines can be derived
by repeated convolution [Chu92] as given by

NN(x) = N0(x) ∗ NN−1(x). (8.106)

Thus, the Fourier transform leads to

FT[NN(x)] = sincN+1(f ). (8.107)

With the help of the properties in the frequency domain, the necessary order of the spline
interpolation can be determined. Owing to the attenuation properties of the sincN+1(f )

function and the simple real-time calculation of the coefficients, spline interpolation is well
suited to time-variant conversion in the last stage of a multistage sampling rate conversion
system [Zöl94].
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8.5 Exercises

1. Basics

Consider a simple sampling rate conversion system with a conversion rate of 4
3 . The system

consists of two upsampling blocks, each by 2, and one downsampling block by 3.

1. What are anti-imaging and anti-aliasing filters and where do we need them in our
system?

2. Sketch the block diagram.

3. Sketch the input, intermediate and output spectra in the frequency domain.

4. How is the amplitude affected by the up- and downsampling and where does it come
from?

5. Sketch the frequency response of the anti-aliasing and anti-imaging filters needed for
this upsampling system.

2. Synchronous Conversion

Our system will now be upsampled directly by a factor of 4, and again downsampled by
a factor of 3, but with linear interpolation and decimation methods. The input signal is
x(n) = sin(nπ/6), n = 0, . . . , 48.

1. What are the impulse responses of the two interpolation filters? Sketch their magni-
tude responses.

2. Plot the signals (input, intermediate and output signal) in the time domain using
Matlab.

3. What is the delay resulting from the causal interpolation/decimation filters?

4. Show the error introduced by this interpolation/decimation method, in the frequency
domain.

3. Polyphase Representation

Now we extend our system using a polyphase decomposition of the interpolation/decima-
tion filters.

1. Sketch the idea of polyphase decomposition using a block diagram. What is the
benefit of such decomposition?

2. Calculate the polyphase filters for up- and downsampling (using interpolation and
decimation).

3. Use Matlab to plot all resulting signals in the time and frequency domain.
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4. Asynchronous Conversion

1. What is the basic concept of asynchronous sampling rate conversion?

2. Sketch the block diagram and discuss the individual operations.

3. What is the necessary oversampling factor L for a 20-bit resolution?

4. How can we simplify the oversampling operations?

5. How can we make use of polyphase filtering?

6. Why are halfband filters an efficient choice for the upsampling operation?

7. Which parameters determine the interpolation algorithms in the last stage of the
conversion?

References

[Ada92] R. Adams, T. Kwan: VLSI Architectures for Asynchronous Sample-Rate
Conversion, Proc. 93rd AES Convention, Preprint No. 3355, San Francisco,
October 1992.

[Ada93] R. Adams, T. Kwan: Theory and VLSI Implementations for Asynchronous
Sample-Rate Conversion, Proc. 94th AES Convention, Preprint No. 3570,
Berlin, March 1993.

[Bar90] S. Barnett: Matrices – Methods and Applications, Oxford University Press,
Oxford, 1990.

[Boe93] W. Boehm, H. Prautzsch: Numerical Methods, Vieweg, Wiesbaden, 1993.

[Chu92] C. K. Chui, Ed.: Wavelets: A Tutorial in Theory and Applications, Volume 2,
Academic Press, Boston, 1992.

[Cro83] R. E. Crochiere, L. R. Rabiner: Multirate Digital Signal Processing, Prentice
Hall, Englewood Cliffs, NJ, 1983.

[Cuc91] S. Cucchi, F. Desinan, G. Parladori, G. Sicuranza: DSP Implementation
of Arbitrary Sampling Frequency Conversion for High Quality Sound
Application, Proc. IEEE ICASSP-91, pp. 3609–3612, Toronto, May 1991.

[Fli00] N. Fliege: Multirate Digital Signal Processing, John Wiley & Sons Ltd,
Chichester, 2000.

[Hsi87] C.-C. Hsiao: Polyphase Filter Matrix for Rational Sampling Rate Conversions,
Proc. IEEE ICASSP-87, pp. 2173–2176, Dallas, April 1987.

[Kat85] Y. Katsumata, O. Hamada: A Digital Audio Sampling Frequency Converter
Employing New Digital Signal Processors, Proc. 79th AES Convention,
Preprint No. 2272, New York, October 1985.



References 271

[Kat86] Y. Katsumata, O. Hamada: An Audio Sampling Frequency Conversion Using
Digital Signal Processors, Proc. IEEE ICASSP-86, pp. 33–36, Tokyo, 1986.

[Lag81] R. Lagadec, H. O. Kunz: A Universal, Digital Sampling Frequency Converter
for Digital Audio, Proc. IEEE ICASSP-81, pp. 595–598, Atlanta, April 1981.

[Lag82a] R. Lagadec, D. Pelloni, D. Weiss: A Two-Channel Professional Digital
Audio Sampling Frequency Converter, Proc. 71st AES Convention, Preprint
No. 1882, Montreux, March 1982.

[Lag82b] D. Lagadec, D. Pelloni, D. Weiss: A 2-Channel, 16-Bit Digital Sampling
Frequency Converter for Professional Digital Audio, Proc. IEEE ICASSP-82,
pp. 93–96, Paris, May 1982.

[Lag82c] R. Lagadec: Digital Sampling Frequency Conversion, Digital Audio, Collected
Papers from the AES Premier Conference, pp. 90–96, June 1982.

[Lag83] R. Lagadec, D. Pelloni, A. Koch: Single-Stage Sampling Frequency
Conversion, Proc. 74th AES Convention, Preprint No. 2039, New York,
October 1983.

[Liu92] G.-S. Liu, C.-H. Wei: A New Variable Fractional Delay Filter with Nonlinear
Interpolation, IEEE Trans. Circuits and Systems-II: Analog and Digital Signal
Processing, Vol. 39, No. 2, pp. 123–126, February 1992.

[Opp99] A. V. Oppenheim, R. W. Schafer, J. R. Buck: Discrete Time Signal Processing,
2nd edn, Prentice Hall, Upper Saddle River, NJ, 1999.

[Par90] S. Park, R. Robles: A Real-Time Method for Sample-Rate Conversion from CD
to DAT, Proc. IEEE Int. Conf. Consumer Electronics, pp. 360–361, Chicago,
June 1990.

[Par91a] S. Park: Low Cost Sample Rate Converters, Proc. NAB Broadcast Engineering
Conference, Las Vegas, April 1991.

[Par91b] S. Park, R. Robles: A Novel Structure for Real-Time Digital Sample-Rate
Converters with Finite Precision Error Analysis, Proc. IEEE ICASSP-91, pp.
3613–3616, Toronto, May 1991.

[Ram82] T. A. Ramstad: Sample-Rate Conversion by Arbitrary Ratios, Proc. IEEE
ICASSP-82, pp. 101–104, Paris, May 1982.

[Ram84] T. A. Ramstad: Digital Methods for Conversion between Arbitrary Sampling
Frequencies, IEEE Trans. on Acoustics, Speech and Signal Processing,
Vol. ASSP-32, No. 3, pp. 577–591, June 1984.

[Smi84] J. O. Smith, P. Gossett: A Flexible Sampling-Rate Conversion Method, Proc.
IEEE ICASSP-84, pp. 19.4.1–19.4.4, 1984.

[Sti91] E. F. Stikvoort: Digital Sampling Rate Converter with Interpolation in
Continuous Time, Proc. 90th AES Convention, Preprint No. 3018, Paris,
February 1991.



272 Sampling Rate Conversion

[Vai93] P. P. Vaidyanathan: Multirate Systems and Filter Banks, Prentice Hall,
Englewood Cliffs, NJ, 1993.

[Zöl94] U. Zölzer, T. Boltze: Interpolation Algorithms: Theory and Application, Proc.
97th AES Convention, Preprint No. 3898, San Francisco, November 1994.



Chapter 9

Audio Coding

For transmission and storage of audio signals, different methods for compressing data have
been investigated besides the pulse code modulation representation. The requirements of
different applications have led to a variety of audio coding methods which have become
international standards. In this chapter basic principles of audio coding are introduced and
the most important audio coding standards discussed. Audio coding can be divided into
two types: lossless and lossy. Lossless audio coding is based on a statistical model of the
signal amplitudes and coding of the audio signal (audio coder). The reconstruction of the
audio signal at the receiver allows a lossless resynthesis of the signal amplitudes of the
original audio signal (audio decoder). On the other hand, lossy audio coding makes use of a
psychoacoustic model of human acoustic perception to quantize and code the audio signal.
In this case only the acoustically relevant parts of the signal are coded and reconstructed
at the receiver. The samples of the original audio signal are not exactly reconstructed. The
objective of both audio coding methods is a data rate reduction or data compression for
transmission or storage compared to the original PCM signal.

9.1 Lossless Audio Coding

Lossless audio coding is based on linear prediction followed by entropy coding [Jay84] as
shown in Fig. 9.1:

• Linear Prediction. A quantized set of coefficients P for a block of M samples is
determined which leads to an estimate x̂(n) of the input sequence x(n). The aim is to
minimize the power of the difference signal d(n) without any additional quantization
errors, i.e. the word-length of the signal x̂(n) must be equal to the word-length of
the input. An alternative approach [Han98, Han01] quantizes the prediction signal
x̂(n) such that the word-length of the difference signals d(n) remains the same as the
input signal word-length. Figure 9.2 shows a signal block x(n) and the corresponding
spectrum |X(f )|. Filtering the input signal with the predictor filter transfer function
P(z) delivers the estimate x̂(n). Subtracting input and prediction signal yields the
prediction error d(n), which is also shown in Fig. 9.2 and which has a considerably
lower power compared to the input power. The spectrum of this prediction error is

Digital Audio Signal Processing Second Edition Udo Zölzer
© 2008 John Wiley & Sons, Ltd
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nearly white (see Fig. 9.2, lower right). The prediction can be represented as a filter
operation with an analysis transfer function HA(z) = 1 − P(z) on the coder side.

Coder

Decoder

x(n)
xc(n)Quantization

and
Coding

Linear
Prediction

Statistical
Model

Multiplex
and

Frame
Packing

x̂(n)

d(n)

P(M)

Predictor

x(n)xc(n) Decoding

P(M)

DMUX

Figure 9.1 Lossless audio coding based on linear prediction and entropy coding.

• Entropy Coding. Quantization of signal d(n) due to the probability density func-
tion of the block. Samples d(n) of greater probability are coded with shorter data
words, whereas samples d(n) of lesser probability are coded with longer data words
[Huf52].

• Frame Packing. The frame packing uses the quantized and coded difference signal
and the coding of the M coefficients of the predictor filter P(z) of order M .

• Decoder. On the decoder side the inverse synthesis transfer function HS(z) =
H−1

A (z) = [1 − P(z)]−1 reconstructs the input signal with the coded difference sam-
ples and the M filter coefficients. The frequency response of this synthesis filter rep-
resents the spectral envelope shown in the upper right part of Fig. 9.2. The synthesis
filter shapes the white spectrum of the difference (prediction error) signal with the
spectral envelope of the input spectrum.

The attainable compression rates depend on the statistics of the audio signal and allow a
compression rate of up to 2 [Bra92, Cel93, Rob94, Cra96, Cra97, Pur97, Han98, Han01,
Lie02, Raa02, Sch02]. Figure 9.3 illustrates examples of the necessary word-length for
lossless audio coding [Blo95, Sqa88]. Besides the local entropy of the signal (entropy com-
puted over a block length of 256), results for linear prediction followed by Huffman coding
[Huf52] are presented. Huffman coding is carried out with a fixed code table [Pen93] and
a power-controlled choice of adapted code tables. It is observed from Fig. 9.3 that for high
signal powers, a reduction in word-length is possible if the choice is made from several
adapted code tables. Lossless compression methods are used for storage media with limited
word-length (16 bits in CD and DAT) which are used for recording audio signals of higher
word-lengths (more than 16 bits). Further applications are in the transmission and archiving
of audio signals.
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Figure 9.2 Signals and spectra for linear prediction.

9.2 Lossy Audio Coding

Significantly higher compression rates (of factor 4 to 8) can be obtained with lossy coding
methods. Psychoacoustic phenomena of human hearing are used for signal compression.
The fields of application have a wide range, from professional audio like source coding for
DAB to audio transmission via ISDN and home entertainment like DCC and MiniDisc.

An outline of the coding methods [Bra94] is standardized in an international specifica-
tion ISO/IEC 11172-3 [ISO92], which is based on the following processing (see Fig. 9.4):

• subband decomposition with filter banks of short latency time;

• calculation of psychoacoustic model parameters based on short-time FFT;

• dynamic bit allocation due to psychoacoustic model parameters (signal-to-mask ratio
SMR);

• quantization and coding of subband signals;

• multiplex and frame packing.
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Figure 9.3 Lossless audio coding (Mozart, Stravinsky): word-length in bits versus time
(entropy - - , linear prediction with Huffman coding — ).
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Figure 9.4 Lossy audio coding based on subband coding and psychoacoustic models.

Owing to lossy audio coding, post-processing of such signals or several coding and
decoding steps is associated with some additional problems. The high compression rates
justify the use of lossy audio coding techniques in applications like transmission.

9.3 Psychoacoustics

In this section, basic principles of psychoacoustics are presented. The results of psychoa-
coustic investigations by Zwicker [Zwi82, Zwi90] form the basis for audio coding based on
models of human perception. These coded audio signals have a significantly reduced data
rate compared to the linearly quantized PCM representation. The human auditory system
analyzes broad-band signals in so-called critical bands. The aim of psychoacoustic coding
of audio signals is to decompose the broad-band audio signal into subbands which are
matched to the critical bands and then perform quantization and coding of these subband
signals [Joh88a, Joh88b, Thei88]. Since the perception of sound below the absolute thresh-
old of hearing is not possible, subband signals below this threshold need neither be coded
nor transmitted. In addition to the perception in critical bands and the absolute threshold,
the effects of signal masking in human perception play an important role in signal coding.
These are explained in the following and their application to psychoacoustic coding is
discussed.

9.3.1 Critical Bands and Absolute Threshold

Critical Bands. Critical bands as investigated by Zwicker are listed in Table 9.1.
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Table 9.1 Critical bands as given by Zwicker [Zwi82].

z/Bark fl /Hz fu/Hz fB /Hz fc/Hz

0 0 100 100 50
1 100 200 100 150
2 200 300 100 250
3 300 400 100 350
4 400 510 110 450
5 510 630 120 570
6 630 770 140 700
7 770 920 150 840
8 920 1080 160 1000
9 1080 1270 190 1170

10 1270 1480 210 1370
11 1480 1720 240 1600
12 1720 2000 280 1850
13 2000 2320 320 2150
14 2320 2700 380 2500
15 2700 3150 450 2900
16 3150 3700 550 3400
17 3700 4400 700 4000
18 4400 5300 900 4800
19 5300 6400 1100 5800
20 6400 7700 1300 7000
21 7700 9500 1800 8500
22 9500 1200 2500 10500
23 12000 15500 3500 13500
24 15500

A transformation of the linear frequency scale into a hearing-adapted scale is given by
Zwicker [Zwi90] (units of z in Bark):

z

Bark
= 13 arctan

(
0.76

f

kHz

)
+ 3.5 arctan

(
f

7.5 kHz

)2

. (9.1)

The individual critical bands have bandwidths

�fB = 25 + 75

(
1 + 1.4

(
f

kHz

)2)0.69

. (9.2)

Absolute Threshold. The absolute threshold LTq (threshold in quiet) denotes the curve
of sound pressure level L [Zwi82] versus frequency, which leads to the perception of a
sinusoidal tone. The absolute threshold is given by [Ter79]:

LTq

dB
= 3.64

(
f

kHz

)−0.8

− 6.5 exp

(
−0.6

(
f

kHz
− 3.3

)2)
+ 10−3

(
f

kHz

)4

. (9.3)

Below the absolute threshold, no perception of signals is possible. Figure 9.5 shows the ab-
solute threshold versus frequency. Band-splitting in critical bands and the absolute thresh-
old allow the calculation of an offset between the signal level and the absolute threshold for
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every critical band. This offset is responsible for choosing appropriate quantization steps
for each critical band.
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Figure 9.5 Absolute threshold (threshold in quiet).

9.3.2 Masking

For audio coding the use of sound perception in critical bands and absolute threshold only is
not sufficient for high compression rates. The basis for further data reduction are the mask-
ing effects investigated by Zwicker [Zwi82, Zwi90]. For band-limited noise or a sinusoidal
signal, frequency-dependent masking thresholds can be given. These thresholds perform
masking of frequency components if these components are below a masking threshold (see
Fig. 9.6). The application of masking for perceptual coding is described in the following.
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20k
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Figure 9.6 Masking threshold of band-limited noise.

Calculation of Signal Power in Band i. First, the sound pressure level within a critical
band is calculated. The short-time spectrum X(k) = DFT[x(n)] is used to calculate the
power density spectrum

Sp(ej�) = Sp(ej (2πk/N)) = X2
R(ej (2πk/N)) + X2

I (e
j (2πk/N)), (9.4)

Sp(k) = X2
R(k) + X2

I (k), 0 ≤ k ≤ N − 1, (9.5)
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with the help of an N-point FFT. The signal power in band i is calculated by the sum

Sp(i) =
�ui∑

�=�li

Sp(k) (9.6)

from the lower frequency up to the upper frequency of critical band i. The sound pressure
level in band i is given by LS(i) = 10 log10 Sp(i).

Absolute Threshold. The absolute threshold is set such that a 4 kHz signal with peak am-
plitude ±1 LSB for a 16-bit representation lies at the lower limit of the absolute threshold
curve. Every masking threshold calculated in individual critical bands, which lies below
the absolute threshold, is set to a value equal to the absolute threshold in the corresponding
band. Since the absolute threshold within a critical band varies for low and high frequen-
cies, it is necessary to make use of the mean absolute threshold within a band.

Masking Threshold. The offset between signal level and the masking threshold in critical
band i (see Fig. 9.7) is given by [Hel72]

O(i)

dB
= α(14.5 + i) + (1 − α)av, (9.7)

where α denotes the tonality index and av is the masking index. The masking index [Kap92]
is given by

av = −2 − 2.05 arctan

(
f

4 kHz

)
− 0.75 arctan

(
f 2

2.56 kHz2

)
. (9.8)

As an approximation,
O(i)

dB
= α(14.5 + i) + (1 − α)5.5 (9.9)

can be used [Joh88a, Joh88b]. If a tone is masking a noise-like signal (α = 1), the threshold
is set 14.5 + i dB below the value of LS(i). If a noise-like signal is masking a tone (α = 0),
the threshold is set 5.5 + i dB below LS(i). In order to recognize a tonal or noise-like
signal within a certain number of samples, the spectral flatness measure SFM is estimated.
The SFM is defined by the ratio of the geometric to arithmetic mean value of Sp(i) as

SFM = 10 log10



[∏N/2

k=1 Sp(ej (2πk/N))
]1/(N/2)

1
N/2

∑N/2
k=1 Sp(ej (2πk/N))

i


 . (9.10)

The SFM is compared with the SFM of a sinusoidal signal (definition SFMmax = −60 dB)
and the tonality index is calculated [Joh88a, Joh88b] by

α = min

(
SFM

SFMmax
, 1

)
. (9.11)

SFM = 0 dB corresponds to a noise-like signal and leads to α = 0, whereas an SFM=75 dB
gives a tone-like signal (α = 1). With the sound pressure level LS(i) and the offset O(i)
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the masking threshold is given by

T (i) = 10[LS(i)−O(i)]/10. (9.12)

Masking across Critical Bands. Masking across critical bands can be carried out with the
help of the Bark scale. The masking threshold is of a triangular form which decreases at
S1 dB per Bark for the lower slope and at S2 dB per Bark for the upper slope, depending on
the sound pressure level Li and the center frequency fci in band i (see [Ter79]) according to

S1 = 27 dB/Bark, (9.13)

S2 = 24 + 0.23

(
fci

kHz

)−1

− 0.2
LS(i)

dB
dB/Bark. (9.14)

An approximation of the minimum masking within a critical band can be made using
Fig. 9.8 [Thei88, Sauv90]. Masking at the upper frequency fui in the critical band i is
responsible for masking the quantization noise with approximately 32 dB using the lower
masking threshold that decreases by 27 dB/Bark. The upper slope has a steepness which
depends on the sound pressure level. This steepness is lower than the steepness of the lower
slope. Masking across critical bands is presented in Fig. 9.9. The masking signal in critical
band i − 1 is responsible for masking the quantization noise in critical band i as well as the
masking signal in critical band i. This kind of masking across critical bands further reduces
the number of quantization steps within critical bands.

L/dB

LS O(i)

f
fl i fui

Band i

Figure 9.7 Offset between signal level and masking threshold.

An analytical expression for masking across critical bands [Schr79] is given by

10 log10[B(�i)] = 15.81 + 7.5(�i + 0.474) − 17.5[1 + (�i + 0.474)2] 1
2 . (9.15)

�i denotes the distance between two critical bands in Bark. Expression (9.15) is called the
spreading function. With the help of this spreading function, masking of critical band i by
critical band j can be calculated [Joh88a, Joh88b] with abs(i − j) ≤ 25 such that

Sm(i) =
24∑

j=0

B(i − j) · Sp(i). (9.16)
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Figure 9.8 Masking within a critical band.
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Figure 9.9 Masking across critical bands.

The masking across critical bands can therefore be expressed as a matrix operation given by


Sm(0)

Sm(1)
...

Sm(24)


=




B(0) B(−1) B(−2) · · · B(−24)

B(1) B(0) B(−1) · · · B(−23)
...

...
...

...

B(24) B(23) B(22) · · · B(0)






Sp(0)

Sp(1)
...

Sp(24)


 . (9.17)

A renewed calculation of the masking threshold with (9.16) leads to the global masking
threshold

Tm(i) = 10log10 Sm(i)−O(i)/10. (9.18)

For a clarification of the single steps for a psychoacoustic based audio coding we summa-
rize the operations with exemplified analysis results:

• calculation of the signal power Sp(i) in critical bands → LS(i) in dB (Fig. 9.10a);

• calculation of masking across critical bands Tm(i) → LTm(i) in dB (Fig. 9.10b);

• masking with tonality index → LTm(i) in dB (Fig. 9.10c);

• calculation of global masking threshold with respect to threshold in quiet LTq →
LTm,abs(i) in dB (Fig. 9.10d).



9.3 Psychoacoustics 283

20 50 100 200 500 1k 2k 5k 10k 20k
-40

-20

0

20

40

60

80

f/Hz →

a) Signal power in critical bands
L S

(i)
/d

B
→

FFT
L

s
(i)

20 50 100 200 500 1k 2k 5k 10k 20k
-40

-20

0

20

40

60

80

f/Hz →

b) Masking across critical bands

L m
(i)

/d
B

→

FFT
L

m
(i)

20 50 100 200 500 1k 2k 5k 10k 20k
-40

-20

0

20

40

60

80

f/Hz →

c) Masking with tonality index, SFM = − 47.20 dB, α = 0.79

L T
m

(i)
/d

B
→

FFT
L

Tm
(i)

L
Tq

(i)

20 50 100 200 500 1k 2k 5k 10k 20k
-40

-20

0

20

40

60

80

f/Hz →

d) Masking with absolute threshold

L T
m

,a
bs

(i)
/d

B
→

FFT
L

Tq
(i)

L
Tm,abs

(i)

Figure 9.10 Stepwise calculation of psychoacoustic model.



284 Audio Coding

With the help of the global masking threshold LTm,abs(i) we calculate the signal-to-mask
ratio

SMR(i) = LS(i) − LTm,abs(i) in dB (9.19)

per Bark band. This signal-to-mask ratio defines the necessary number of bits per critical
band, such that masking of quantization noise is achieved. For the given example the signal
power and the global masking threshold are shown in Fig. 9.11a. The resulting signal-to-
mask ratio SMR(i) is shown in Fig. 9.11b. As soon as SMR(i) > 0, one has to allocate
bits to the critical band i. For SMR(i) < 0 the corresponding critical band will not be
transmitted. Figure 9.12 shows the masking thresholds in critical bands for a sinusoid of
440 Hz. Compared to the first example, the influence of masking thresholds across critical
bands is easier to observe and interpret.
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Figure 9.11 Calculation of the signal-to-mask ratio SMR.

9.4 ISO-MPEG-1 Audio Coding

In this section, the coding method for digital audio signals is described which is specified in
the standard ISO/IEC 11172-3 [ISO92]. The filter banks used for subband decomposition,
the psychoacoustic models, dynamic bit allocation and coding are discussed. A simplified
block diagram of the coder for implementing layers I and II of the standard is shown in
Fig. 9.13. The corresponding decoder is shown in Fig. 9.14. It uses the information from
the ISO-MPEG1 frame and feeds the decoded subband signals to a synthesis filter bank for
reconstructing the broad-band PCM signal. The complexity of the decoder is, in contrast
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Figure 9.12 Calculation of psychoacoustic model for a pure sinusoid with 440 Hz.

Dynamic
Bit Allocation

x1

SMR

x32

x(n)

x c

Quantization
and

Coding

Analysis
Filter
Bank

ST-
FFT

Psycho-
acoustic
Model

IS
O

-M
P

E
G

F
ra

m
e

Scalefactor
Calculation

768 kbit/s

192...32 kbit/s

Figure 9.13 Simplified block diagram of an ISO-MPEG1 coder.

to the coder, significantly lower. Prospective improvements of the coding method are being
made entirely for the coder.

9.4.1 Filter Banks

The subband decomposition is done with a pseudo-QMF filter bank (see Fig. 9.15). The
theoretical background is found in the related literature [Rot83, Mas85, Vai93]. The broad-
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Figure 9.14 Simplified block diagram of an ISO-MPEG1 decoder.

band signal is decomposed into M uniformly spaced subbands. The subbands are pro-
cessed further after a sampling rate reduction by a factor of M . The implementation of an
ISO-MPEG1 coder is based on M = 32 frequency bands. The individual band-pass filters
H0(z) · · · HM−1(z) are designed using a prototype low-pass filter H(z) and frequency-
shifted versions. The frequency shifting of the prototype with cutoff frequency π/2M is
done by modulating the impulse response h(n) with a cosine term [Bos02] according to

hk(n) = h(n) · cos

(
π

32
(k + 0,5)(n − 16)

)
, (9.20)

fk(n) = 32 · h(n) · cos

(
π

32
(k + 0,5)(n + 16)

)
, (9.21)

with k = 0, . . . , 31 and n = 0, . . . , 511. The band-pass filters have bandwidth π/M . For
the synthesis filter bank, corresponding filters F0(z) · · · FM−1(z) give outputs which are
added together, resulting in a broad-band PCM signal. The prototype impulse response with
512 taps, the modulated band-pass impulse responses, and the corresponding magnitude
responses are shown in Fig. 9.16. The magnitude responses of all 32 band-pass filters are
also shown. The overlap of neighboring band-pass filters is limited to the lower and upper
filter band. This overlap reaches up to the center frequency of the neighboring bands. The
resulting aliasing after downsampling in each subband will be canceled in the synthesis
filter bank. The pseudo-QMF filter bank can be implemented by the combination of a
polyphase filter structure followed by a discrete cosine transform [Rot83, Vai93, Kon94].

To increase the frequency resolution, layer III of the standard decomposes each of the
32 subbands further into a maximum of 18 uniformly spaced subbands (see Fig. 9.17). The
decomposition is carried out with the help of an overlapped transform of windowed sub-
band samples. The method is based on a modified discrete cosine transform, also known as
the TDAC filter bank (Time Domain Aliasing Cancellation) and MLT (Modulated Lapped
Transform). An exact description is given in [Pri87, Mal92]. This extended filter bank
is referred to as the polyphase/modified discrete cosine transform (MDCT) hybrid filter
bank [Bra94]. The higher frequency resolution enables a higher coding gain but has the
disadvantage of a worse time resolution. This is observed for impulse-like signals. In order
to minimize these artifacts, the number of subbands per subband can be altered from 18
down to 6. Subband decompositions that are matched to the signal can be obtained by
specially designed window functions with overlapping transforms [Edl89, Edl95]. The
equivalence of overlapped transforms and filter banks is found in [Mal92, Glu93, Vai93,
Edl95, Vet95].
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Figure 9.15 Pseudo-QMF filter bank.

9.4.2 Psychoacoustic Models

Two psychoacoustic models have been developed for layers I to III of the ISO-MPEG1
standard. Both models can be used independently of each other for all three layers. Psy-
choacoustic model 1 is used for layers I and II, whereas model 2 is used for layer III. Owing
to the numerous applications of layers I and II, we discuss psychoacoustic model 1 in this
subsection.

Bit allocation in each of the 32 subbands is carried out using the signal-to-mask ratio
SMR(i). This is based on the minimum masking threshold and the maximum signal level
within a subband. In order to calculate this ratio, the power density spectrum is estimated
with the help of a short-time FFT in parallel with the analysis filter bank. As a consequence,
a higher frequency resolution is obtained for estimating the power density spectrum in
contrast to the frequency resolution of the 32-band analysis filter bank. The signal-to-mask
ratio for every subband is determined as follows:

1. Calculate the power density spectrum of a block of N samples using FFT. After
windowing a block of N = 512 (N = 1024 for layer II) input samples, the power
density spectrum

X(k) = 10 log10

∣∣∣∣ 1

N

N−1∑
n=0

h(n)x(n)e−jnk2π/N

∣∣∣∣2 in dB (9.22)
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is calculated. Then the window h(n) is displaced by 384 (12 · 32) samples and the
next block is processed.

2. Determine the sound pressure level in every subband. The sound pressure level is
derived from the calculated power density spectrum and by calculating a scaling
factor in the corresponding subband as given by

LS(i) = max[X(k), 20 log10[SCFmax(i) · 32768] − 10] in dB. (9.23)

For X(k), the maximum of the spectral lines in a subband is used. The scaling factor
SCF(i) for subband i is calculated from the absolute value of the maximum of 12
consecutive subband samples. A nonlinear quantization to 64 levels is carried out
(layer I). For layer II, the sound pressure level is determined by choosing the largest
of the three scaling factors from 3 · 12 subband samples.

3. Consider the absolute threshold. The absolute threshold LTq(m) is specified for
different sampling rates in [ISO92]. The frequency index m is based on a reduction
of N/2 relevant frequencies with the FFT of index k (see Fig. 9.18). The subband
index is still i.

k=255FFT index  k

Frequency index m

Subband index i

k=0    k=1

Figure 9.18 Nomenclature of frequency indices.

4. Calculate tonal Xtm(k) or non-tonal Xnm(k) masking components and determining
relevant masking components (for details see [ISO92]). These masking components
are denoted by Xtm[z(j)] and Xnm[z(j)]. With the index j , tonal and non-tonal
masking components are labeled. The variable z(m) is listed for reduced frequency
indices m in [ISO92]. It allows a finer resolution of the 24 critical bands with the
frequency group index z.

5. Calculate the individual masking thresholds. For masking thresholds of tonal and
non-tonal masking components Xtm[z(j)] and Xnm[z(j)], the following calculation
is performed:

LTtm[z(j), z(m)] = Xtm[z(j)] + avtm[z(j)] + vf [z(j), z(m)] dB, (9.24)

LTnm[z(j), z(m)] = Xnm[z(j)] + avnm[z(j)] + vf [z(j), z(m)] dB. (9.25)

The masking index for tonal masking components is given by

avtm = −1.525 − 0.275 · z(j) − 4.5 in dB, (9.26)

and the masking index for non-tonal masking components is

avnm = −1.525 − 0.175 · z(j) − 0.5 in dB. (9.27)
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The masking function vf [z(j), z(m)] with distance �z = z(m) − z(j) is given by

vf =




17 · (�z + 1) − (0.4 · X[z(j)] + 6) −3 ≤ �z < −1
(0.4 · X[z(j)] + 6) · �z −1 ≤ �z < 0
−17 · �z 0 ≤ �z < 1
−(�z − 1) · (17 − 0.15 · X[z(j)]) − 17 1 ≤ �z < 8

in dB in Bark.

This masking function vf [z(j), z(m)] describes the masking of the frequency index
z(m) by the masking component z(j).

6. Calculate the global masking threshold. For frequency index m, the global masking
threshold is calculated as the sum of all contributing masking components accord-
ing to

LTg(m) = 10 log10

[
10LTq(m)/10 +

Tm∑
j=1

10LTtm[z(j),z(m)]/10

+
Rm∑
j=1

10LTnm[z(j),z(m)]/10
]

dB. (9.28)

The total number of tonal and non-tonal masking components are denoted as Tm and
Rm respectively. For a given subband i, only masking components that lie in the
range −8 to +3 Bark will be considered. Masking components outside this range are
neglected.

7. Determine the minimum masking threshold in every subband:

LTmin(i) = min[LTg(m)] dB. (9.29)

Several masking thresholds LTg(m) can occur in a subband as long as m lies within
the subband i.

8. Calculate the signal-to-mask ratio SMR(i) in every subband:

SMR(i) = LS(i) − LTmin(i) dB. (9.30)

The signal-to-mask ratio determines the dynamic range that has to be quantized in the
particular subband so that the level of quantization noise lies below the masking threshold.
The signal-to-mask ratio is the basis for the bit allocation procedure for quantizing the
subband signals.

9.4.3 Dynamic Bit Allocation and Coding

Dynamic Bit Allocation. Dynamic bit allocation is used to determine the number of bits
that are necessary for the individual subbands so that a transparent perception is possible.
The minimum number of bits in subband i can be determined from the difference between
scaling factor SCF(i) and the absolute threshold LTq(i) as b(i) = SCF(i) − LTq(i). With
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this, quantization noise remains under the masking threshold. Masking across critical bands
is used for the implementation of the ISO-MPEG1 coding method.

For a given transmission rate, the maximum possible number of bits Bm for coding
subband signals and scaling factors is calculated as

Bm =
32∑
i=1

b(i) + SCF(i) + additional information. (9.31)

The bit allocation is performed within an allocation frame consisting of 12 subband samples
(384 = 12 · 32 PCM samples) for layer I and 36 subband samples (1152 = 36 · 32 PCM
samples) for layer II.

The dynamic bit allocation for the subband signals is carried out as an iterative proce-
dure. At the beginning, the number of bits per subband is set to zero. First, the mask-to-
noise ratio

MNR(i) = SNR(i) − SMR(i) (9.32)

is determined for every subband. The signal-to-mask ratio SMR(i) is the result of the
psychoacoustic model. The signal-to-noise ratio SNR(i) is defined by a table in [ISO92],
in which for every number of bits a corresponding signal-to-noise ratio is specified. The
number of bits must be increased as long as the mask-to-noise ratio MNR is less than zero.

The iterative bit allocation is performed by the following steps.

1. Determination of the minimum MNR(i) of all subbands.

2. Increasing the number of bits of these subbands on to the next stage of the MPEG1
standard. Allocation of 6 bits for the scaling factor of the MPEG1 standard when the
number of bits is increased for the first time.

3. New calculation of MNR(i) in this subband.

4. Calculation of the number of bits for all subbands and scaling factors and comparison
with the maximum number Bm. If the number of bits is smaller than the maximum
number, the iteration starts again with step 1.

Quantization and Coding of Subband Signals. The quantization of the subband signals
is done with the allocated bits for the corresponding subband. The 12 (36) subband samples
are divided by the corresponding scaling factor and then linearly quantized and coded (for
details see [ISO92]). This is followed by a frame packing. In the decoder, the procedure is
reversed. The decoded subband signals with different word-lengths are reconstructed into a
broad-band PCM signal with a synthesis filter bank (see Fig. 9.14). MPEG-1 audio coding
has a one- or a two-channel stereo mode with sampling frequencies of 32, 44.1, and 48 kHz
and a bit rate of 128 kbit/s per channel.

9.5 MPEG-2 Audio Coding

The aim of the introduction of MPEG-2 audio coding was the extension of MPEG-1 to
lower sampling frequencies and multichannel coding [Bos97]. Backward compatibility
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to existing MPEG-1 systems is achieved through the version MPEG-2 BC (Backward
Compatible) and the introduction toward lower sampling frequencies of 32, 22.05, 24 kHz
with version MPEG-2 LSF (Lower Sampling Frequencies). The bit rate for a five-channel
MPEG-2 BC coding with full bandwidth of all channels is 640–896 kBit/s.

9.6 MPEG-2 Advanced Audio Coding

To improve the coding of mono, stereo, and multichannel audio signals the MPEG-2 AAC
(Advanced Audio Coding) standard was specified. This coding standard is not backward
compatible with the MPEG-1 standard and forms the kernel for new extended coding
standards such as MPEG-4. The achievable bit rate for a five-channel coding is 320 kbit/s.
In the following the main signal processing steps for MPEG-2 AAC are introduced and
the principle functionalities explained. An extensive explanation can be found in [Bos97,
Bra98, Bos02]. The MPEG-2 AAC coder is shown in Fig. 9.19. The corresponding decoder
performs the functional units in reverse order with corresponding decoder functionali-
ties.

Pre-processing. The input signal will be band-limited according to the sampling frequency.
This step is used only in the scalable sampling rate profile [Bos97, Bra98, Bos02].

Filter bank. The time-frequency decomposition into M = 1024 subbands with an over-
lapped MDCT [Pri86, Pri87] is based on blocks of N = 2048 input samples. A stepwise
explanation of the implementation is given. A graphical representation of the single steps
is shown in Fig. 9.20. The single steps are as follows:

1. Partitioning of the input signal x(n) with time index n into overlapped blocks

xm(r) = x(mM + r), r = 0, . . . , N − 1; −∞ ≤ m ≤ ∞, (9.33)

of length N with an overlap (hop size) of M = N/2. The time index inside a block
is denoted by r . The variable m denotes the block index.

2. Windowing of blocks with window function w(r) → xm(r) · w(r).

3. The MDCT

X(m, k) =
√

2

M

N−1∑
r=0

xm(r)w(r) cos

(
π

M

(
k + 1

2

)(
r + M + 1

2

))
,

k = 0, . . . , M − 1, (9.34)

yields, for every M input samples, M = N/2 spectral coefficients from N windowed
input samples.

4. Quantization of spectral coefficients X(m, k) leads to quantized spectral coefficients
XQ(m, k) based on a psychoacoustic model.
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Figure 9.19 MPEG-2 AAC coder and decoder.

5. The IMDCT (Inverse Modified Discrete Cosine Transform)

x̂m(r) =
√

2

M

M−1∑
k=0

XQ(m, k) cos

(
π

M

(
k + 1

2

)(
r + M + 1

2

))
,

r = 0, . . . , N − 1, (9.35)

yields, for every M input samples, N output samples in block x̂m(r).

6. Windowing of inverse transformed block x̂m(r) with window function w(r).
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7. Reconstruction of output signal y(n) by overlap-add operation according to

y(n) =
∞∑

m=−∞
x̂m(r)w(r), r = 0, . . . , N − 1, (9.36)

with overlap M .

In order to explain the procedural steps we consider the MDCT/IMDCT of a sine pulse
shown in Fig. 9.21. The left column shows from the top down the input signal and partitions
of the input signal of block length N = 256. The window function is a sine window. The
corresponding MDCT coefficients of length M = 128 are shown in the middle column.
The IMDCT delivers the signals in the right column. One can observe that the inverse
transforms with the IMDCT do not exactly reconstruct the single input blocks. Moreover,
each output block consists of an input block and a special superposition of a time-reversed
and by M = N/2 circular shifted input block, which is denoted by time-domain aliasing
[Pri86, Pri87, Edl89]. The overlap-add operation of the single output blocks perfectly
recovers the input signal which is shown in the top signal of the right column (Fig. 9.21).
For a perfect reconstruction of the output signal, the window function of the analysis
and synthesis step has to fulfill the condition w2(r) + w2(r + M) = 1, r = 0, . . . , M − 1.
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Figure 9.21 Signals of MDCT/IMDCT.

The Kaiser–Bessel derived window [Bos02] and a sine window h(n) = sin((n + 1
2 ) π

N
) with

n = 0, . . . , N − 1 [Mal92] are applied. Figure 9.22 shows both window functions with
N = 2048 and the corresponding magnitude responses for a sampling frequency of fS =
44100 Hz. The sine window has a smaller pass-band width but slower falling side lobes.
In contrast, the Kaiser–Bessel derived window shows a wider pass-band and a faster decay
of the side lobes. In order to demonstrate the filter bank properties and in particular the
frequency decomposition of MDCT, we derive the modulated band-pass impulse responses
of the window functions (prototype impulse response w(n) = h(n)) according to

hk(n) = 2 · h(n) · cos

(
π

M

(
k + 1

2

)(
n + M + 1

2

))
,

k = 0, . . . , M − 1; n = 0, . . . , N − 1. (9.37)

Figure 9.23 shows the normalized prototype impulse response of the sine window and
the first two modulated band-pass impulse responses h0(n) and h1(n) and accordingly the
corresponding magnitude responses are depicted. Besides the increased frequency resolu-
tion with M = 1024 band-pass filters, the reduced stop-band attenuation can be observed.
A comparison of this magnitude response of the MDCT with the frequency resolution of
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Figure 9.22 Kaiser–Bessel derived window and sine window for N = 2048 and magnitude responses
of the normalized window functions.

the PQMF filter bank with M = 32 in Fig. 9.16 points out the different properties of both
subband decompositions.

For adjusting the time and frequency resolution to the properties of an audio signal
several methods have been investigated. Signal-adaptive audio coding based on the wavelet
transform can be found in [Sin93, Ern00]. Window switching can be applied for achiev-
ing a time-variant time-frequency resolution for MDCT and IMDCT applications. For
stationary signals a high frequency resolution and a low time resolution are necessary.
This leads to long windows with N = 2048. Coding of attacks of instruments needs a
high time resolution (reduction of window length to N = 256) and thus reduces frequency
resolution (reduction of number of spectral coefficients). A detailed description of switch-
ing between time-frequency resolution with the MDCT/IMDCT can be found in [Edl89,
Bos97, Bos02]. Examples of switching between different window functions and windows
of different length are shown in Fig. 9.24.

Temporal Noise Shaping. A further method for adapting the time-frequency resolution
of a filter bank and here an MDCT/IMDCT to the signal characteristic is based on linear
prediction along the spectral coefficients in the frequency domain [Her96, Her99]. This
method is called temporal noise shaping (TNS) and is a weighting of the temporal envelope
of the time-domain signal. Weighting the temporal envelope in this way is demonstrated in
Fig. 9.25.
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Figure 9.25a shows a signal from a castanet attack. Making use of the discrete cosine
transform (DCT, [Rao90])

XC(2)(k) =
√

2

N
ck

N−1∑
n=0

x(n) cos

(
(2n + 1)kπ

2N

)
, k = 0, . . . , N − 1 (9.38)
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Figure 9.25 Attack of castanet and spectrum.

and the inverse discrete cosine transform (IDCT)

x(n) =
√

2

N

N−1∑
k=0

ckX
C(2)(k) cos

(
(2n + 1)kπ

2N

)
, n = 0, . . . , N − 1

with ck =
{

1/
√

(2), k = 0,

1, otherwise,
(9.39)
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the spectral coefficients of the DCT of this castanet attack are represented in Fig. 9.25b.
After quantization of these spectral coefficients X(k) to 4 bits (Fig. 9.25d) and IDCT of
the quantized spectral coefficients, the time-domain signal in Fig. 9.25c and the difference
signal in Fig. 9.25e between input and output result. One can observe in the output and
difference signal that the error is spread along the entire block length. This means that
before the attack of the castanet happens, the error signal of the block is perceptible.
The time-domain masking, referred to as pre-masking [Zwi90], is not sufficient. Ideally,
the spreading of the error signal should follow the time-domain envelope of the signal
itself. From forward linear prediction in the time domain it is known that the power spec-
tral density of the error signal after coding and decoding is weighted by the envelope
of the power spectral density of the input signal [Var06]. Performing a forward linear
prediction along the frequency axis in the frequency domain and quantization and coding
leads to an error signal in the time domain where the temporal envelope of the error
signal follows the time-domain envelope of the input signal [Her96]. To point out the
temporal weighting of the error signal we consider the forward prediction in the time
domain in Fig. 9.26a. For coding the input signal, x(n) is predicted by an impulse response
p(n). The output of the predictor is subtracted from the input signal x(n) and delivers
the signal d(n), which is then quantized to a reduced word-length. The quantized signal
dQ(n) = x(n) ∗ a(n) + e(n) is the sum of the convolution of x(n) with the impulse re-
sponse a(n) and the additive quantization error e(n). The power spectral density of the
coder output is SDQDQ(ej�) = SXX(ej�) · |A(ej�)|2 + SEE(ej�). The decoding operation
performs the convolution of dQ(n) with the impulse response h(n) of the inverse system to
the coder. Therefore a(n) ∗ h(n) = δ(n) must hold and thus H(ej�) = 1/A(ej�). Hereby
the output signal y(n) = x(n) + e(n) ∗ h(n) is derived with the corresponding discrete
Fourier transform Y (k) = X(k) + E(k) · H(k). The power spectral density of the decoder
out signal is given by SYY(ej�) = SXX(ej�) + SEE(ej�) · |H(ej�)|2. Here one can observe
the spectral weighting of the quantization error with the spectral envelope of the input
signal which is represented by |H(ej�)|. The same kind of forward prediction will now
be applied in the frequency domain to the spectral coefficients X(k) = DCT[x(n)] for a
block of input samples x(n) shown in Fig. 9.26b. The output of the decoder is then given
by Y (k) = X(k) + E(k) ∗ H(k) with A(k) ∗ H(k) = δ(k). Thus, the corresponding time-
domain signal is y(n) = x(n) + e(n) · h(n), where the temporal weighting of the quantiza-
tion error with the temporal envelope of the input signal is clearly evident. The temporal
envelope is represented by the absolute value |h(n)| of the impulse response h(n). The
relation between the temporal signal envelope (absolute value of the analytical signal)
and the autocorrelation function of the analytical spectrum is discussed in [Her96]. The
dualities between forward linear prediction in time and frequency domain are summarized
in Table 9.2. Figure 9.27 demonstrates the operations for temporal noise shaping in the
coder, where the prediction is performed along the spectral coefficients. The coefficients of
the forward predictor have to be transmitted to the decoder, where the inverse filtering is
performed along the spectral coefficients.

The temporal weighting is finally demonstrated in Fig. 9.28, where the corresponding
signals with forward prediction in the frequency domain are shown. Figure 9.28a,b shows
the castanet signal x(n) and its corresponding spectral coefficients X(k) of the applied
DCT. The forward prediction delivers D(k) in Fig. 9.28d and the quantized signal DQ(k)

in Fig. 9.28f. After the decoder the signal Y (k) in Fig. 9.28h is reconstructed by the inverse
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transfer function. The IDCT of Y (k) finally results in the output signal y(n) in Fig. 9.28e.
The difference signal x(n) − y(n) in Fig. 9.28g demonstrates the temporal weighting of the
error signal with the temporal envelope from Fig. 9.28c. For this example, the order of the
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Table 9.2 Forward prediction in time and frequency domain.

Prediction in time domain Prediction in frequency domain

y(n) = x(n) + e(n) ∗ h(n)

Y (k) = X(k) + E(k) · H(k)

y(n) = x(n) + e(n) · h(n)

Y (k) = X(k) + E(k) ∗ H(k)

predictor is chosen as 20 [Bos97] and the prediction along the spectral coefficients X(k) is
performed by the Burg method. The prediction gain for this signal in the frequency domain
is Gp = 16 dB (see Fig. 9.28d).

Frequency-domain Prediction. A further compression of the band-pass signals is possible
by using linear prediction. A backward prediction [Var06] of the band-pass signals is
applied on the coder side (see Fig. 9.29). In using a backward prediction the predictor
coefficients need not be coded and transmitted to the decoder, since the estimate of the input
sample is based on the quantized signal. The decoder derives the predictor coefficients p(n)

in the same way from the quantized input. A second-order predictor is sufficient, because
the bandwidth of the band-pass signals is very low [Bos97].
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Figure 9.29 Backward prediction of band-pass signals.

Mono/Side Coding. Coding of stereo signals with left and right signals xL(n) and xR(n)

can be achieved by coding a mono signal (M) xM(n) = (xL(n) + xR(n))/2 and a side (S,
difference) signal xS(n) = (xL(n) − xR(n))/2 (M/S coding). Since for highly correlated
left and right signals the power of the side signal is reduced, a reduction in bit rate for this
signal can be achieved. The decoder can reconstruct the left signal xL(n) = xM(n) + xS(n)

and the right signal xR(n) = xM(n) − xS(n), if no quantization and coding is applied to the
mono and side signal. This M/S coding is carried out for MPEG-2 AAC [Bra98, Bos02]
with the spectral coefficients of a stereo signal (see Fig. 9.30).
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Intensity Stereo Coding. For intensity stereo (IS) coding a mono signal xM(n) = xL(n) +
xR(n) and two temporal envelopes eL(n) and eR(n) of the left and right signals are coded
and transmitted. On the decoding side the left signal is reconstructed by yL(n) = xM(n) ·
eL(n) and the right signal by yR(n) = xM(n) · eR(n). This reconstruction is lossy. The IS
coding of MPEG-2 AAC [Bra98] is performed by summation of spectral coefficients of
both signals and by coding of scale factors which represent the temporal envelope of both
signals (see Fig. 9.31). This type of stereo coding is only useful for higher frequency bands,
since the human perception for phase shifts is non-sensitive for frequencies above 2 kHz.
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Figure 9.31 Intensity stereo coding in frequency domain.

Quantization and Coding. During the last coding step the quantization and coding of the
spectral coefficients takes place. The quantizers, which are used in the figures for prediction
along spectral coefficients in frequency direction (Fig. 9.27) and prediction in the frequency
domain along band-pass signals (Fig. 9.29), are now combined into a single quantizer per
spectral coefficient. This quantizer performs nonlinear quantization similar to a floating-
point quantizer of Chapter 2 such that a nearly constant signal-to-noise ratio over a wide
amplitude range is achieved. This floating-point quantization with a so-called scale factor
is applied to several frequency bands, in which several spectral coefficients use a common
scale factor derived from an iteration loop (see Fig. 9.19). Finally, a Huffman coding of
the quantized spectral coefficients is performed. An extensive presentation can be found in
[Bos97, Bra98, Bos02].
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9.7 MPEG-4 Audio Coding

The MPEG-4 audio coding standard consists of a family of audio and speech coding
methods for different bit rates and a variety of multimedia applications [Bos02, Her02].
Besides a higher coding efficiency, new functionalities such as scalability, object-oriented
representation of signals and interactive synthesis of signals at the decoder are integrated.
The MPEG-4 coding standard is based on the following speech and audio coders.

• Speech coders

– CELP: Code Excitated Linear Prediction (bit rate 4–24 kbit/s).

– HVXC: Harmonic Vector Excitation Coding (bit rate 1.4–4 kbit/s).

• Audio coders

– Parametric audio: representation of a signal as a sum of sinsoids, harmonic
components, and residual components (bit rate 4–16 kbit/s).

– Structured audio: synthetic signal generation at decoder (extension of the MIDI
standard1) (200 bit–4 kbit/s).

– Generalized audio: extension of MPEG-2 AAC with additional methods in the
time-frequency domain. The basic structure is depicted in Fig. 9.19 (bit rate
6–64 kbit/s).

Basics of speech coders can found in [Var06]. The specified audio coders allow coding with
lower bit rates (Parametric Audio and Structured Audio) and coding with higher quality at
lower bit rates compared to MPEG-2 AAC.

Compared to coding methods such as MPEG-1 and MPEG-2 introduced in previous
sections, the parametric audio coding is of special interest as an extension to the filter bank
methods [Pur99, Edl00]. A parametric audio coder is shown in Fig. 9.32. The analysis
of the audio signal leads to a decomposition into sinusoidal, harmonic and noise-like sig-
nal components and the quantization and coding of these signal components is based on
psychoacoustics [Pur02a]. According to an analysis/synthesis approach [McA86, Ser89,
Smi90, Geo92, Geo97, Rod97, Mar00a] shown in Fig. 9.33 the audio signal is represented
in a parametric form given by

x(n) =
M∑
i=1

Ai(n) cos

(
2π

fi(n)

fA

n + ϕi(n)

)
+ xn(n). (9.40)

The first term describes a sum of sinusoids with time-varying amplitudes Ai(n), fre-
quencies fi(n) and phases ϕi(n). The second term consists of a noise-like component
xn(n) with time-varying temporal envelope. This noise-like component xn(n) is derived by
subtracting the synthesized sinusoidal components from the input signal. With the help of
a further analysis step, harmonic components with a fundamental frequency and multiples
of this fundamental frequency are identified and grouped into harmonic components. The
extraction of deterministic and stochastic components from an audio signal can be found in

1http://www.midi.org/.
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[Alt99, Hai03, Kei01, Kei02, Mar00a, Mar00b, Lag02, Lev98, Lev99, Pur02b]. In addition
to the extraction of sinusoidal components, the modeling of noise-like components and
transient components is of specific importance [Lev98, Lev99]. Figure 9.34 exemplifies
the decomposition of an audio signal into a sum of sinusoids xs(n) and a noise-like sig-
nal xn(n). The spectrogram shown in Fig. 9.35 represents the short-time spectra of the
sinusoidal components. The extraction of the sinusoids has been achieved by a modified
FFT method [Mar00a] with an FFT length of N = 2048 and an analysis hop size of RA =
512.

The corresponding parametric MPEG-4 decoder is shown in Fig. 9.36 [Edl00, Mei02].
The synthesis of the three signal components can be achieved by inverse FFT and overlap-
add methods or can be directly performed by time-domain methods [Rod97, Mei02]. A
significant advantage of parametric audio coding is the direct access at the decoder to the
three main signal components which allows effective post-processing for the generation of
a variety of audio effects [Zöl02]. Effects such as time and pitch scaling, virtual sources in
three-dimensional spaces and cross-synthesis of signals (karaoke) are just a few examples
of interactive sound design on the decoding side.
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9.8 Spectral Band Replication

To further reduce the bit rate an extension of MPEG-1 Layer III with the name MP3pro
was introduced [Die02, Zie02]. The underlying method, called spectral band replication
(SBR), performs a low-pass and high-pass decomposition of the audio signal, where the
low-pass filtered part is coded by a standard coding method (e.g. MPEG-1 Layer III) and
the high-pass part is represented by a spectral envelope and a difference signal [Eks02,
Zie03]. Figure 9.37 shows the functional units of an SBR coder. For the analysis of the
difference signal the high-pass part (HP Generator) is reconstructed from the low-pass part
and compared to the actual high-pass part. The difference is coded and transmitted. For
decoding (see Fig. 9.38) the decoded low-pass part of a standard decoder is used by the
HP generator to reconstruct the high-pass part. The additional coded difference signal is
added at the decoder. An equalizer provides the spectral envelope shaping for the high-pass
part. The spectral envelope of the high-pass signal can be achieved by a filter bank and
computing the RMS values of each band-pass signal [Eks02, Zie03]. The reconstruction
of the high-pass part (HP Generator) can also be achieved by a filter bank and substituting
the band-pass signals by using the low-pass parts [Schu96, Her98]. To code the difference
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signal of the high-pass part additive sinusoidal models can be applied such as the parametric
methods of the MPEG-4 coding approach.

Figure 9.39 shows the functional units of the SBR method in the frequency domain.
First, the short-time spectrum is used to calculate the spectral envelope (Fig. 9.39a). The
spectral envelope can be derived from an FFT, a filter bank, the cepstrum or by linear
prediction [Zöl02]. The band-limited low-pass signal can be downsampled and coded by a
standard coder which operates at a reduced sampling rate. In addition, the spectral envelope
has to be coded (Fig. 9.39b). On the decoding side the reconstruction of the upper spectrum
is achieved by frequency-shifting of the low-pass part or even specific low-pass parts and
applying the spectral envelope onto this artificial high-pass spectrum (Fig. 9.39c). An
efficient implementation of a time-varying spectral envelope computation (at the coder
side) and spectral weighting of the high-pass signal (at the decoder side) with a complex-
valued QMF filter bank is described in [Eks02].

9.9 Java Applet – Psychoacoustics

The applet shown in Fig. 9.40 demonstrates psychoacoustic audio masking effects [Gui05].
It is designed for a first insight into the perceptual experience of masking a sinusoidal signal
with band-limited noise.

You can choose between two predefined audio files from our web server (audio1.wav
or audio2.wav). These are band-limited noise signals with different frequency ranges. A
sinusoidal signal is generated by the applet, and two sliders can be used to control its
frequency and magnitude values.
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Figure 9.40 Java applet – psychoacoustics.

9.10 Exercises

1. Psychoacoustics

1. Human hearing

(a) What is the frequency range of human sound perception?

(b) What is the frequency range of speech?

(c) In the above specified range where is the human hearing most sensitive?

(d) Explain how the absolute threshold of hearing has been obtained.

2. Masking

(a) What is frequency-domain masking?

(b) What is a critical band and why is it needed for frequency masking phenomena?

(c) Consider ai and fi to be respectively the amplitude and the frequency of a
partial at index i and V (ai) to be the corresponding volume in dB. The differ-
ence between the level of the masker and the masking threshold is −10 dB. The
masking curves toward lower and higher frequencies are described respectively
by a left slope (27 dB/Bark) and a right slope (15 dB/Bark). Explain the main
steps of frequency masking in this case and show with plots how this masking
phenomena is achieved.

(d) What are the psychoacoustic parameters used for lossy audio coding?

(e) How can we explain the temporal masking and what is its duration after stop-
ping the active masker?
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2. Audio coding

1. Explain the lossless coder and decoder.

2. What is the achievable compression factor for lossless coding?

3. Explain the MPEG-1 Layer III coder and decoder.

4. Explain the MPEG-2 AAC coder and decoder.

5. What is temporal noise shaping?

6. Explain the MPEG-4 coder and decoder.

7. What is the benefit of SBR?
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Quantization step, 22, 23, 65, 247, 249
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measurement of, 193
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Sample-and-hold, 79
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Sampling period, 63
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Sampling rate conversion, 241
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synchronous, 244

Sampling theorem, 63
Scale factor, 303
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Spreading function, 281
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Storage media
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Time constants, 230
Tonality index, 280, 282
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